Television IC Handbook

Television IC Handbook

\$3.50 • PLESSEY Semiconductors

Plessey Semiconductors

TELEVISION IC HANDBOOK

APRIL 1981

.

Plessey Semiconductors

1641 Kaiser Avenue Irvine, CA. 92714

\$3.50

PSI 1775

This pulication is issued to provide outline information only and (unless specifically agreed to the contary by the Company in writing) is not to form part of any order or contract or be regarded as representation relating to the products or services concerned. We reserve the right to alter without notice the specification, design, price or conditions of supply of any product or service.

Contents

1.	PRODUCT RANGE INFORMATION	7-26
2.	TV FREQUENCY SYNTHESISER APPLICATIONS 2	7-42
З.	INFRA-RED REMOTE CONTROL APPLICATIONS 4	3-50
4.	REMOTE CONTROL FOR TOYS APPLICATIONS	1-64
5.	ELECTRONIC TOUCH CONTROL APPLICATIONS	5-76
6.	REMOTE CONTROL USING PPM 7	7-94
7.	TECHNICAL DATA	-268
8.	PACKAGES	-278
9.	PLESSEY SEMICONDUCTORS WORLD WIDE	-284

·

CT2010	1GHz ÷ 380/400 Prescaler
CT2012	PLL Synthesiser for TV 103
CT2017	Synthesiser Tuning Interface
CT2200	5-Bit Binary to 13-Segment Decoder/Driver
ML231B	MOS Touch Tuner
ML232B	MOS Touch Tuner
ML236B	6-Channel Cascadable Touch Control Interface
ML237B	6-Channel Touch Control Interface 125
ML238B	8-Channel Touch Control Interface
ML239B	8-Channel Touch Control Interface 131
ML920	Remote Control Receiver 133
ML922	Remote Control Receiver 137
ML923	Remote Control Receiver 139
ML924	Remote Control Receiver
ML925	Remote Control Receiver for Toys
ML926	Remote Control Receivers (with momentary outputs)
ML927	Remote Control Receivers (with momentary outputs)
ML928	Remote Control Receivers (with latched outputs)
ML929	Remote Control Receivers (with latched outputs)
SL470	BCD to 1 of 10 Decoder/Varicap Driver
SL480	Infra-red Pulse Pre-Amplifier
SL490	Remote Control Transmitter
SL952	UHF Amplifier
SL1430	TV IF Pre-Amplifier
SL1431	TV IF Pre-Amplifier with AGC Generator
SL1432	TV IF Pre-Amplifier with AGC Generator
SL1440	Parallel Sound & Vision IF Amplifiers & Detectors
SP4020	VHF/UHF ÷ 64 Prescalers
SP4021	VHF/UHF ÷ 64 Prescalers 179
SP4040	VHF/UHF ÷ 256 Prescalers
SP4041	VHF/UHF ÷ 256 Prescalers
SW150	Surface Acoustic Wave Color TV IF Filters
SW153	Surface Acoustic Wave Color TV IF Filters
SW170	Surface Acoustic Wave Color TV IF Filters
SW173	Surface Acoustic Wave Color TV IF Filters
SW200	Surface Acoustic Wave Color TV IF Filters
SW250	Surface Acoustic Wave Color TV IF Filters
SW400	Surface Acoustic Wave Color TV IF Filters
SW450	Surface Acoustic Wave Color TV IF Filters
TBA120S	Limiting IF Amplifier/FM Detector
TBA120T	FM IF Amplifier & Demodulator
TBA120U	FM IF Amplifier & Demodulator
TBA440N/P	Video IF Amplifier Demodulator
TBA530	RGB Matrix Pre-Amplifier

TBA540	Reference Combination	213
TBA560C	Luminance & Chrominance Control Combination	217
TBA800	5W Audio Amplifier	221
TBA920	Line Oscillator Combination	225
TBA920S	Line Oscillator Combination	225
TBA950:2X	Line Oscillator Combination	229
TCA800	Color Demodulator with Feedback Clamps	233
TDA440	Video IF Amplifier/Demodulator	237
TDA2522	Color Demodulator Combination	241
TDA2523	Color Demodulator Combination	241
TDA2530	RGB Matrix Pre-Amplifier (with clamps)	245
TDA2532	RGB Matrix Pre-Amplifier (with clamps)	245
TDA2540	Television IF Amplifier & Demodulator	249
TDA2541	Television IF Amplifier & Demodulator	. 249
TDA2560	Luminance & Chrominance Control Combination	253
TDA2590	Line Oscillator Combination	. 257
TDA2591	Line Oscillator Combination	263
TDA2593	Line Oscillator Combination	263

1. PRODUCT RANGE INFORMATION

Building Block IC's

Plessey integrated circuits are on the leading edge of technology without pushing the ragged edge of capability.

We developed the first 2 GHz counter. And a family of prescalers and controllers for your TV, radio and instrumentation frequency synthesizers.

We have a monolithic 1 GHz amplifier. And a complete array of complex integrated function blocks for radar signal processing and radio communications.

We can supply data conversion devices with propagation delays of just $2\frac{1}{2}$ nanoseconds.

And a range of MNOS logic that stores data for a year when you remove the power, yet uses only standard supplies and is fully TTL/CMOS-compatible.

To develop this edge, we developed our own processes, both bipolar and MOS. The processes were designed for quality and repeatability, then applied to our high volume lines. Most of our IC's are available screened to MIL-STD-883B, and our quality levels exceed the most stringent military, TV and automotive requirements.

Millions of Plessey complex function building block IC's are being used in TV sets and car radios; CATV, navigation and radar systems; frequency synthesizers and telecommunications equipment.

Our global scope of operations, our high volume manufacturing facilities, our proprietary processes ensure that we will continue to deliver state-of-the-art technology and reliability in IC devices at the appropriate prices and in the required volumes. Day after day. Week after

week. Year after year.

Plessey Semiconductors

1641 Kaiser Avenue, Irvine, CA 92714. (714) 540-9979

Radar Signal Processing

Since the performance of a radar receiver is critically dependent on the performance of its I.F. strip, we offer a range of "building block" IC's that can be used in systems with different performance requirements and configurations.

The logarithmic I.F. strip shown is an example of a low cost, high performance strip fabricated with Plessey IC's. It uses only five devices and a single interstage filter to achieve a logging range of 90 dB, ± 1 dB accuracy, -90 dBm tangential sensitivity and a video rise time of

20 ns or less.

Three other Plessey IC's complete the system simply and economically. The AGCable SL1550 on the front end improves noise figure, dynamic range and sensitivity. The SL541 lets you vary video output levels, with on-chip compensation making it easy to use. And the SL560 is a "gain block" that replaces your hybrid and discrete amplifiers, usually with no external components.

Another advanced system function block is the Plessey SL531 True Log Amplifier. A 6-stage log strip requires a minimum of external components (one capacitor, one resistor per stage), yet has a band-width of 500 MHz, a dynamic range of 70 dB and has a phase shift of only $\pm 3^{\circ}$ over its entire range. As with most of our other devices, it operates over the full MIL-temp range and is available screened to MIL-STD-883.

The chart summarizes our Radar Signal Processing IC's. Whether you're working with radar and ECM, weapons control or navigation and guidance systems, our IC's are a simpler, less expensive, more flex-

ible alternative to whatever you're using now for any I.F. strip up to 160 MHz.

For more details, please use the postage-paid reply card at the back of this book to order our RADAR AND RADIO COMMUNICA-TIONS IC HANDBOOK, or contact your nearest Plessey Semiconductors representative.

Wideband Amplifiers for Successive Detection Log Strips 30 to 60 MHz center frequency, 12 dB gain. SL521 Dual SL521 (series). SL523 SL1521 60 to 120 MHz center frequency, 12 dB gain. SL1522 Dual SL1521 (parallel). SL1523 Dual SL1521 (series). Low Phase Shift Amplifiers True log I.F. amplifier, 10-200 MHz, ±0.5°/10 dB max SL531 phase shift. SL532 400 MHz bandwidth limiting amplifier, 1° phase shift max, when overdriven 12 dB. **Linear Amplifiers** SL550 125 MHz bandwidth, 40 dB gain, 25 dB swept gain control range, 1.8 dB noise figure, interfaces to microwave mixers SL1550 320 MHz bandwidth version of SL550. 300 MHz bandwidth, 10 to 40 dB gain, 1.8 dB noise SL560 figure drives 50 ohm loads, low power consumption. Video Amplifiers and Detectors Detector (DC to 100 MHz) and video amplifier (DC to SL510 24 MHz) may be used separately, 11 dB incremental gain 28 dB dynamic range.

PLESSEY IC'S FOR RADAR I.F.'S

- SL511 Similar to SL510 with DC to 14 MHz video amplifier, 16 dB incremental gain.
- SL541 High speed op amp configuration, 175 V/µs slew rate 50 ns settling time, stable 70 dB gain, 50 ns recovery from overload.

Radio Communications

Our comprehensive line of radio system function blocks is cutting costs, increasing reliability and reducing the size of systems

peak deviation. The SL6600 can be used at I.F. frequencies up to 50 MHz, with deviations up to 10 kHz.

> If any of the Plessey devices appear interesting, use the postagepaid reply card at the back of this book to order our RADAR AND RADIO COMMUNICATIONS IC HANDBOOK. The Handbook includes full details on our integrated circuits, along with a number of applications circuits and design tips that will help you get the maximum system benefits from Plessey products.

> Or if your need is more urgent, contact your nearest Plessey Semiconductors representative.

in applications that range from commercial communications to military manpack radios.

Using our bipolar Process I, the Plessey SL600 Series (hermetic) and SL1600 Series (plastic DIP) feature a high degree of integration, low power consumption and exceptional system design flexibility for I.F.'s up to 10.7 MHz.

Our SL6000 Series uses our bipolar Process III to extend our building block concept even further. Devices all feature advanced circuit design techniques that permit higher levels of integration, lower power consumption and exceptional performance.

Typical is our SL6600, a monolithic IC that contains a complete IF amplifier, detector, phase locked loop and squelch control. Power consumption is a meager 1.5 mA at 6 V, S/N ratio is 50 dB, dynamic range is 120 dB and THD is just 1.3% for 5 kHz

PLESSEY RADIO IC'S				
Amplifi	ers			
SL 610	SL1610	140 MHz bandwidth, 20 dB gain, 50 dB AGC range, low 4 dB N.F., low distortion.		
SL611	SL1611	100 MHz bandwidth, 26 dB gain, sim. to SL610.		
SL612	SL1612	15 MHz bandwidth, 34 dB gain, 70 dB AGC range, 20 mW power consumption.		
SL613		145 MHz bandwidth, 12 dB gain, limiting amp/detector.		
Mixers				
SL640	SL1640	Double balanced modulator eliminates diode rings up to 75 MHz, standby power 75 mW typical.		
Detecto	rs and A	GC Generators		
SL620	SL1620	AGC with VOGAD (Voice Operated Gain Adjusting Device).		
SL621	SL1621	AGC from detected audio.		
SL623	SL1623	AM SSB detector and AGC from carrier.		
	SL1625	AM detector and AGC from carrier.		
SL624		AM/FM/SSB/CW detector with audio amplifier.		
Audio A	mplifiers			
SL622		Microphone amp. with VOGAD and sidetone amp.		
SL630	SL1630	250 mW microphone/headphone amplifier.		
I.F. Amp	olifiers/D	etectors		
SL6600		FM double conversions with PLL detector.		
SL6640		FM single conversion, audio stage (10.7 MHz).		
SL6650		FM single conversion (10.7 MHz).		
SL6690		FM single conversion, low power for pagers (455 kHz).		
SL6700		AM double conversion.		
Audio Amplifiers				
SL6270		Microphone amplifier with AGC.		
SL6290	SL6270	with speech clipper, buffer and relay driver.		
SL6310		Switchable audio amplifier (400 mW/9V/8 ohms).		
SL6440		High-level mixer.		

R.F.Hybrids

To enhance your systems even further, we have established an R.F. hybrid manufacturing facility in our Irvine, California, U.S.A. headquarters.

For small production quantities or extremely complex functions, our hybrid capabilities can save you time and money while improving your system performance, reducing system size and increasing system reliability. We can help with your I.F. strips, instrumentation front ends, synthesizer subsystems, high speed A-to-D and D-to-A converters and other complex high-frequency functions.

They can be fabricated to MIL-STD-883 using thick and thin film techniques, using our own integrated circuits in combination with discrete transistors, diodes and other components.

Our IC functions represent the state-of-the-art in high frequency integration, with f_t 's as high as 5 GHz. The chips are backed by an in-depth in-house systems knowledge that encompasses radar, radio communications, tele-communications analog and digital conversion, frequency synthesis and a broad range of applications experience.

We can work to your prints, or we can design a full system based on your "black box" specifications. For more information, please contact: Plessey Semiconductors, 1641 Kaiser Avenue, Irvine CA 92714, (714) 540-9979.

Frequency Synthesis

Plessey's IC's offer a quick and easy way to lower synthesizer costs while increasing loop response and channel spacing all the way from dc through the HF, VHF, UHF, TACAN and satellite communications bands.

Our single-modulus prescalers operate at frequencies all the way up to 1.8 GHz. They feature self-biasing clock inputs, TTL/CMOS-compatibility and all guaranteed to operate to at least the frequencies shown, most of them over the temperature range from -55° C to $+125^{\circ}$ C.

Our 2-modulus and 4-modulus dividers expand your system flexibility and allow even tighter channel spacing. All of them provide low power consumption, low propagation delay and ECL-compatibility.

To simplify your systems even further, we also offer highly integrated control chips. Our NJ8811, for example, includes a crystal oscillator maintaining circuit, a programmable reference divider, a programmable divider to control the four-modulus prescaler and a high performance phase/frequency comparator so that you can phase lock your synthesizer to a crystal with none of the usual headaches and hassles.

We've put together a FREQUENCY SYNTHESIZER IC HANDBOOK that details all of the Plessey IC's and includes a number of applications circuits, practical examples of how Plessey integrated circuits can simplify your designs and improve system performance.

For your copy of the Handbook, please use the postagepaid reply card at the back of this book, or contact your nearest Plessey Semiconductors representative.

Program Inputs

Telecommunications

Plessey functional building block IC's are exceptionally versatile. Designed from a systems standpoint, they reduce complexity and lower costs while increasing the performance of telecommunications systems.

Our SL600 Modulator/Phase Locked Loops are used in waveform generators and in AM, PAM, FM, FSK, PSK, PWM, tone burst and Delta modulators.

Our SL1000 Series amplifiers meet the most stringent demands of telephone transmission equipment.

Our transistor arrays with up to five electrically and thermally matched transistors on a chip are ideal for discrete and hybrid amplifiers and mixers. In addition to standard second-source devices that plug directly into your designs, we have a number of devices designed for your low noise and ultrahigh frequency applications.

The Plessey TELECOMMUNICA-TIONS IC HANDBOOK contains complete information on all of these devices, as well as application notes, to help you get the most out of them. To get your copy, please use the postage-paid reply card at the back of this book or call your nearest Plessey Semiconductors representative.

Telecomn	nunication	s Devices			
MJ1440 MJ1444 MJ1445 MJ1471 Data Com	440 HDB3 encoder/decoder 444 PCM synchronizing word generator 445 PCM synchronizing word receiver 471 HDB3/AMI encoder/decoder Communications MOS				
MP3812	32 x 8-bi	t FIFO memory, se	erial or paralle	l, up to	
M120/1	0.25 MH	z data rates, easily	/ Stacked. MHz clock rat	0	
Modulato	r/Phase L	ocked Loops	WITZ CIOCK THE		
SL650	Modulat	or/PLL for AM, PA	M, SCAM, FM,	FSK,	
	VFO vari	e-burst and Delta able 100:1.	modulation;		
SL651	Similar t	o SL650 without a	uxiliary amplif	ier.	
SL652	Similar t	o SL650, low cost.			
EL 1001	Modulat	n/damadulatan E	0 dB corrier o	ad aignal	
311001	suppress	ion. –112 dBm n	o de carrier al bise level.	iu signai	
SL1021	3 MHz cl	annel amplifier, stable remote			
SL1025	FDM bala	anced modulator,	50 dB carrier	and signal	
SL1030	Suppress 200 MHz	ion, 5 dB convers wideband amplifi	ion gain. ier, programm	able gain,	
Transisto	r Arrays				
PL PA	ESSEY	2ND-SOURCE PART NO.	PLESSEY PART NO.	2ND-SOURCE PART NO.	
SL	3081	CA3081	SL3051	CA3951	
SL	.3082	CA3082	SL355	NONE	
SL	.3083	CA3083	IBA673	IBA6/3	
51	3103	CA3105	SL1495	MC1/96C	
SI	3093	CA3093	SI 1496	MC1496	
SL	3018	CA3018	SL1595	MC1595L	
SL3018A		CA3018A	SL1596	MC1596G	
SL	.3118A	CA3118A	SL1596	MC1596L	
SL	.3118	CA3118	SL3054	CA3054	
SL	.3050	CA3050	SL3086	CA3086	
SL360	High fi	requency matched	$1 \text{ pair, } f_{t} = 2.5 \text{ G}$	Hz.	
SL363		use matched pair,	1t-2.2 GHZ.		
SL3145	Five tr	ansistor arrav f+=	=2.5 GHz.		
2001-10					

Television IC's

Plessey integrated circuits are in millions of homes, in television sets around the world.

Economical and reliable, our devices cover the range from remote controls to touch tuners to frequency synthesizers, as well as a range of second-source devices for the IF color processing and line oscillators.

For the 1980's, we have introduced the Plessey KEY System, designed for maximum flexibility, simplicity and ease of manufacture. The KEY System frequency synthesizer offers accurate, high stability frequency selection, channel and program identification, and the very finest digital fine tuning. It can be configured to receive up to four completely different standards (PAL, SECAM, SECAMF, and NTSC) in a single TV set. It has 100 channel capability per standard, and includes a 32-program non-volatile memory that contains channel, fine tuning and standards / information. And it can be interfaced to a Plessey or other microprocessor for games, Teletext or similar applications.

Complete data on all our television devices has been assembled in our TELE-VISION IC HANDBOOK, along with application notes to make them even easier to use. Please use the postage-paid reply card at the back of this book to order your copy, or simply contact your nearest Plessey Semiconductors representative.

ALL TBA, TCA, TDA DEVICES ARE SECOND-SOURCED.

ECL III Logic and Data Conversion

As radar and communications systems become faster and more complex, the need arises for digital processing. We have developed a family of functions with speeds unequalled anywhere.

Part of our family is a range of ECL III logic that is a direct plug-in replacement for MECL logic, including low impedance as well as high impedance devices. We extended the range by adding functions with lower delays and much higher operating speeds. Our SP16F60, for example, is the world's fastest dual 4-input OR/NOR gate, with a switching speed of just 500 picoseconds. Devices can also be selected for certain specifications (such as threshold voltage or slew rate on speed A-to-D converters. Our latching SP9750 high speed comparator features a maximum settling time of 2 ns, a propagation delay of 3.5 ns and is capable of operating at rates up to 100 million samples per second.

Currently, our devices are being used in radar and video processing, nucleonics systems, transient recorders and secure speech transmission systems. We have compiled a number of application notes and details on the devices in our ECL III LOGIC AND DATA CONVERSION IC HANDBOOK. To get your copy, please use the postage-paid reply card at the back of this book, or contact your nearest Plessey Semiconductors representative.

our SP1650/1, toggle rates or delays on our SP1670) to handle your most demanding applications. We've also developed a family of high speed comparators and circuits for ultra-high

HIGH	SPEED	ECL III	LOGIC
------	-------	---------	-------

SP1648	Voltage controlled oscillator
SP1650	Dual A/D comparator, Hi-Z
SP1651	Dual A/D comparator, Lo-Z
SP1658	Voltage controlled multivibrator
SP1660	Dual 4-I/P OR/NOR gate, Hi-Z
SP1661	Dual 4-I/P OR/NOR gate, Lo-Z
SP1662	Quad 2-I/P NOR gate, Hi-Z
SP1663	Quad 2-I/P NOR gate, Lo-Z
SP1664	Quad 2-I/P OR gate, Hi-Z
SP1665	Quad 2-I/P OR gate, Lo-Z
SP1666	Dual clocked R-S Flip-Flop, Hi-Z
SP1667	Dual clocked R-S Flip-Flop, Lo-Z
SP1668	Dual clock latch, Hi-Z
SP1669	Dual clock latch, Lo-Z
SP1670	Master-slave D Flip-Flop, Hi-Z
SP1671	Master-slave D Flip-Flop, Hi-Z
SP1672	Triple 2-I/P exclusive-OR gate, Hi-Z
SP1673	Triple 2-I/P exclusive-OR gate, Lo-Z
SP1674	Triple 2-I/P exclusive-NOR gate, Hi-Z
SP1675	Triple 2-I/P exclusive-NOR gate, Lo-Z
SP1692	Quad line receiver
SP16F60	Dual 4-I/P OR/NOR gate

	HIGH SPEED DATA CONVERSION PRODUCTS				
	SP9680	High speed latched comparator.			
	SP9685	Ultra-fast comparator; 0.5 ns typical set-up time; typical 2.2 ns propagation delay; excellent CMR.			
ł	SP9687	Dual SP 9685.			
	SP9750	High speed latched comparator with precision current source, wired-OR decoding; 2 ns min. set-up time; 2.5 ns propagation delay.			
	SP9752	2-bit ADC expandable to 6-bit ADC; very fast 125 MHz clock.			
	SP9754	4-bit ADC expandable to 8-bit ADC; very fast 100 MHz clock.			
	SP9768	8-bit DAC; extremely fast; available 3rd guarter 1980.			
	SP9778	8-bit SAR; works with SP9768 to make a two-chip succes- sive approximation ADC (20 MHz clock); available 4th quarter 1980.			

MNOS Non-Volatile Logic

As semiconductors become more pervasive in military and commercial applications, the need for non-volatile data retention becomes more and more critical.

Plessey NOVOL MNOS devices answer that need, and will retain their data for at least a year $(-40^{\circ}C \text{ to } +70^{\circ}C)$ in the event of "power down" or a system crash.

Our devices all operate from standard MOS supplies and are fully compatible with your TTL/CMOS designs. The high voltages normally associated with electricallyalterable memories are generated on-chip to make system interface simpler and less expensive.

Plessey NOVOL devices provide a reliable, sensible alternative to CMOS with battery back-up or mechanical, electro-mechanical and magnetic devices. Applications include metering, security code storage, microprocessor back-up, elapsed time indicators, counters, latching relays and a variety of commercial, industrial and military systems.

For more information, contact your nearest Plessey Semiconductors representative, or use the postage-paid reply card at the back of this brochure to order your copy of the Plessey NOVOL literature package.

PLESSEY NOVOL MNOS					
MN9102	4-bit Data Latch (+5V, -12V)				
MN9105	4-Decade Up/Down Counter (+5V, -12V)				
MN9106	6-Decade Up Counter (12V only)				
MN9107	100-Hour Timer (12V only)				
MN9108	10,000-Hour Timer (12V only)				
MN9110	6-Decade Up Counter with Carry (12V only)				
MN9210	64 x 4-Bit Memory				
* '	8 x 4-Bit Memory				
*	6-Decade Up/Down Counter, BCD Output				
*	6-Decade Up/Down Counter with Preset BCD Output				
	* COMING SOON				

Power Control

Plessey power control devices are highly integrated not just to solve the problems, but to solve them at a lower cost than any other available method.

For timing, our devices use a pulse integration technique that eliminates the need for expensive electrolytic capacitors, thus increasing accuracy and repeatability while reducing costs. An integral supply voltage sensing circuit inhibits triac gate drive circuitry if the supply is dangerously low to prevent half-wave firing and firing without achieving complete bulk conduction. A zero-voltage spike filter prevents misfiring on noise inputs. Symmetrical control prevents the introduction of dc components onto the power lines.

Devices have been tailored for specific applications as indicated in the chart. For more information, please use the postage-paid reply card at the back of this book to order our POWER CONTROL IC HANDBOOK, or contact your nearest Plessey Semiconductors representative.

LOAD CURRENT

	5
SL440	Proportional phase control for motors, lamps and lower power, fast response heating.
SL441	Similar to SL440, with proportional temperature control and thermister malfunction sensing, for hairdryers, soldering irons and food warmers.
SL442	Switch mode power sup- ply control, up to 40 kHz, integral oscillator, vari- able ratio space/mark pulses, soft-start, dynamic current limiting, OVP.
SL443	Similar to SL441 with manual power control, long timing periods for hot plates, electric blankets and traffic lights.
SL444	Similar to SL441 for 240V permanent magnet motor with thermal trip, current limit detector.
SL445	Proportional or On/Off control, temperature trip/ inhibit circuitry, LED and alarm drive facilities, for ovens, heaters, industrial temperature controllers.
SL446	On/Off servo loop temper- ature controller, low exter- nal component count, for water and panel heaters, refrigerators, irons.
TBA1085	Motor speed control

Processes, Testing and Quality Control

Just as we applied our systems knowledge to the partitioning of functions to make our IC's extremely flexible and cost effective, we also developed an internal system concept to ensure that we could deliver our state-of-the-art solutions year after year.

Our concept of standard processes and rigid design rules ensures that our devices are reproducible this year, next year and five years from now. Our continuing investment in research and development ensures that any new products we introduce will be on the leading edge of technology, yet with the same high performance and reliability that our customers have come to expect as the Plessey standard.

The result is that millions of Plessey devices have been built into TV sets and car radios; CATV, navigation and radar systems; frequency synthesizers and telecommunications equipment.

Plessey MOS Processes

P-channel metal gate MOS has been in production for years and is used for both standard Plessey products and custom LSI. Using ion implantation to modify transistor and field threshold voltages, we can reproduce virtually any p-channel metal gate process, with or without depletion loads.

MNOS (non-volatile) is essentially a p-MOS process with variable threshold memory transistors fabricated alongside conventional MOS transistors. A modified oxide-nitride gate dielectric permits the injection and retention of charge to change the threshold voltage. Current Plessey products will retain an injected charge for at least a year, and include an onchip high voltage generator so that they may be used with standard supply voltages.

N-channel metal gate MOS uses an auto-registration co-planar process with layout similar to our p-MOS. Ion implantation is used to define the threshold voltage of the depletion and enhancement transistors. The constant-current-like characteristics of depletion load devices give the most effective driving capability, and enhancement depletion technology simplifies design and increases packing density. The field threshold voltage is also controlled by an ion implant, allowing the use of a lightly doped substrate. This reduces both the body constant and the junction capacitance and results in faster switching speeds.

Plessey Bipolar Processes

Bipolar Process I is a conventional buried +N layer diffusion process with f_t =600 MHz and other characteristics similar to industry-standard processes. Applications range from high reliability military devices to high volume consumer products.

Process Varian	t A	B Non	G	D
Application	General Purpose	Saturating Logic	Saturating Logic	Linear Consumer
ВVсво @ 10µА	20V min.	10V min.	10V min.	45V min.
ΒV EBO @ 10μ A	5.3V to 5.85V	5.15V min.	5.15 V min.	6.8V to 7.4V
LVCEO	12V min.	8V min.	8V min.	20V min.
VCE (SAT) @				
lB≕1mA,	0.43V	0.32V	0.43V	0.6V
IC=10mÅ	max.	max.	max.	max.
hFE @ IC=5n	nA, 40 to 200	50 min.	50 min.	50 to 200
VCE=	5V			
fT @ IC=5n	n A , 500	500	500	350
VCE=	5V MHz	MHz min.	MHz min.	MHz min.

Bipolar High Voltage (HV) Process is a variant of Process I that yields an LV_{ceo} greater than 45 volts. Doping levels can be controlled and an extra diffusion used to fabricate a buried avalanche diode with a 40 V breakdown for absorbing powerful noise transients without being destroyed.

Process Variant	CA	
BVCBO @ 10uA	80V min.	
BVEBO @ 10µA	7.2V to 8.0V	
LVCEO	45V min.	
VCE (SAT) @ IB=1mA.		
IC=10mA	0.4V max.	
hFE @ IC=5mA		
VCE=5V,	80 to 300	
ft @ IC=5mA, VCE=5V	250 MHz min.	

Bipolar Process III uses very shallow diffusion and extremely narrow spacing for high frequency integrated circuits with unusually low power consumption and high packing densities. An f_t of 2.5 GHz allows us to routinely produce analog amplifiers with bandwidths as high as 300 MHz and low power dividers and prescalers that operate at frequencies up to 1.2 GHz. Process variants allow us to produce devices with an extended β , higher breakdown voltages and very small geometries.

WE
Digital
10V min.
5.1V to 5.8V
7V min.
0.5V max.
40 to 200
1.8 GHz

Bipolar Process 3V is an extension of our Process III. Ion implantation and washed emitters have given the process an $f_t=6.5$ GHz, allowing us to produce dividers working at 2 GHz, logic gates with delays of less than 500 picoseconds and linear amplifiers at 1 GHz.

Application Digital	
BVCB0 @ 10µA 8V min.	
BVEB0 @ 10µA 3.0V to 5.	٥٧
LVCEO@ 5mÅ 6V min.	
VCE (SAT) @ IB=1mA,	
IC=10mÅ 0.5V ma	x.
hFE @ IC=10mA, VCE=5V 40 to 12	0
ft @ IC=5mA, VCE=2V 6.5 GH	Z

Testing and Quality Control

A major thrust of our development work is to ensure that our processes will routinely produce reliable devices. Our Process III has a projected MTBF of 400,000 hours while our Process I is even better.

Our facilities include the latest test equipment (such as the Macrodata MD501, Teradyne J324 and Fairchild Sentry VII and Sentinel) to allow us to perform all the necessary functional and parametric testing in-house. We have an internal capability to provide specific applications-oriented screening, and most Plessey IC's are available screened to MIL-STD-883 and other international specifications. Our quality levels exceed the most stringent military, TV and automotive requirements as a matter of course.

But the best proof of all these claims is our products themselves. After you've reviewed the products that could help you with your systems, use the postage-paid reply card or contact your nearest Plessey representative for complete details.

I.C. Screening to MIL-STD-883

The following Screening Procedures are available from Plessey Semiconductors

Plessey Semiconductors reserve the right to change the Screening Procedure for Standard Products.

2. TV FREQUENCY SYNTHESISER

INTRODUCTION

The Key System is a second-generation frequency synthesis kit of integrated circuits, developed by Plessey Semiconductors for the television market. The first generation system (which many other manufacturers have since attempted to emulate) prompted suggestions from customers for other features that they would like to see incorporated into such a system. This valuable input, combined with Plessey Semiconductors' expertise in frequency synthesis and high speed dividers, led to the design of the Key System.

The Key System is not simply a re-vamp of the first-generation kit, but rather a complete redesign. The aim was to simplify the television designer's task by offering circuits which could be grouped together in cost-effective modular blocks. By choosing an appropriate selection from the wide range of options available within the Key System, the designer can quickly assemble a configuration which is tailored to his specific requirements.

Fig.1 shows, in simplified form, the essential elements of the Key System.

Fig. 1 The Key System

The Synthesiser Block (comprising three integrated circuits which are common to all Key System configurations) provides highly accurate phase-locked loop tuning and is used in conjunction with a conventional varicap tuner. The Synthesiser Block is controlled by means of coded information transmitted on the Keybus data highway by the Control Block.

Just as the Synthesiser Block contributes precision and stability of tuning, so the Control Block provides the versatility of the Key System through the wide range of optional circuits and configurations available. Control Block options include local and remote programme selection, dedicated control ICs, microprocessor control and a selection of four read-only memory 'Key' circuits programmed with tuning information for the most common PAL, SECAM and NTSC standards.

To allow expansion to higher levels of sophistication, Plessey Semiconductors have developed a range of optional circuits for the **Features Block.** These circuits (again, controlled via the Keybus) at present provide digital clock, onscreen display, and a Keybus-Mibus interface for Teletext and Viewdata.

In Keyway 1, the component ICs of the Key System are described, and a number of configurations illustrated. In addition, the general principles of frequency synthesis are discussed in Appendix 1 and a summary of Key System circuits is given in Appendix 2.

THE SYNTHESISER BLOCK

Fig.2 shows the Synthesiser Block, comprising the CT2010, CT2012 and CT2017. Together with the varicap-controlled VCO in the tuner, they form a phase-locked loop which is controlled via the Keybus. The CT2010 includes a sensitive prescaler which requires no additional preamplification of the tuner's local oscillator signal. Radiation from the circuits in the Synthesiser Block is very low: screening round these circuits is, therefore, not necessary.

The Synthesiser Block contributes the following features:

- ÷20 prescaler (CT2010)
- ÷ 19/20 two-modulus divider (CT2010)
- Delay-tolerant modulus control
- 2.5kHz reference frequency (CT2012)
- Power low detector (CT2017)
- Signal quality detector (CT2017)
- Varicap control (CT2017)
- 'Exact' tuning in 50kHz fine tuning steps

Full technical data for the CT2010, CT2012 and CT2017 are published in Keydata, Synthesiser Block.

Fig. 2 Synthesiser Block

KEYBUS

The Keybus is a four-line bi-directional data plus multiplex clock highway. Control codes are sent along the Keybus when the clock is low, and data when clock is high. Ones or zeroes are inserted between adjacent codes or data words to avoid spurious instructions. All devices driving the Keybus should have open drain outputs, for which pull-up resistors (nominally $4k\Omega$) are included in the CT2012.

CONTROL BLOCK

The integrated circuits from which a variety of Control Block configurations can be constructed include: three Control circuits CT2014, CT2015 or CT1650A/PIC1650Z-20 microprocessor; a choice of up to four CT2030 series Key ROMs (each programmed with 100 channels of stored frequency and name information and the ML1900 and ML1910 remote control receiver/transmitter combination.

Also optional to the Key System Control Block is the ER1400/NC7400 non-volatile memory, which can be used to store (against each programme number) Key location, channel number (channel name and band accessed from Key), fine tuning adjustments and Auto on/off information.

An alternative to the use of any of the above Control circuit options is a Control Block consisting of a microprocessor chosen and programmed by the system designer. This choice still enables the benefits of the Plessey Key System Synthesiser Block to be reaped, while using the microprocessor to perform other functions as well as controlling the phase-locked loop.

Key Circuits (CT2030 series)

The emphasis throughout the Key System is high technical performance and flexibility at a competitive price. For this reason we have designed the Key circuits, each one of which contains a 100 channel ROM to tune to the correct channel frequencies for a particular IF. Hence, each Key is designed for one particular standard. Obviously, since we have gone to the trouble of giving the possibility of 'exact' tuning (by using 50kHz fine tuning steps in the PLL), it makes sense to use the exact frequency rather than an approximation based on another transmission standard's IF. Up to four Key circuits can be attached to the Keybus, giving the opportunity for a multistandard system.

In addition to holding the frequency list for one particular standard, information is also stored in each Key circuit for the channel name and band against each channel number. The necessary interface logic for the non-volatile programme memory is also present on each Key circuit. Since these devices are pin compatible with each other, their position on the Keybus is immaterial, any Key can occupy the prime (Key O) position through which any other Keys will interface with the programme memory.

The CT1650A/PIC1650Z-20 does not require an external Key circuit to be added to the bus. Information from one Key, the CT2030 (Pal B & G) has been included in the memory of this microprocessor.

The Non-Volatile Programme Memory

An optional add-on to every Control Block is a non-volatile programme memory. We have used the well-proven 14 x 100 ER1400/NC7400 which is available from a number of suppliers. This is capable of storing the following information for each of 32 programmes: Key location, channel number, fine tuning information (50kHz steps), Auto Mode bit. The Key location information is not stored in the single-standard microprocessor version.

On selection of a programme number, the nonvolatile memory is read to give the Key location; this will access the appropriate division ratio stored against the channel number in the relevant Key. The correction tuning information is also fed out of the programme memory and, if the Auto bit is set, the system will switch to Auto Mode. In this mode of operation the digital signals from the CT2017 AFC Control are sent to the control circuit (CT2014, CT2015 or CT1650A, etc.) where they are used to change the frequency in the PLL in 50kHz steps. If the correction tuning is changed manually, the Auto Mode bit will be cancelled. Therefore, in order to store both correction tuning data and set the Auto Mode bit, the correction tuning must be stored first.

CT2200 Display Driver

If one wishes to show the programme selected on LED displays, then the CT2200 nonmultiplexed display driver can be used in conjunction with two seven-segment, common-anode arrays.

This device takes the 5-bit binary input, 00000 to 11111, and directly drives two displays, 1 to 32. The only external components needed are for brightness control (as illustrated in Fig.3). The CT2200 is driven from the +5V supply used throughout the system.

ML1900/10 Remote Control

The Remote control circuits, the ML1910 receiver and the ML1900 transmitter offer the following features:

- Up to 288 commands (including Teletext, Viewdata, etc.)
- 'Base Mode' plus eight shift modes
- Six analogues, 64 levels
- ML1910 receiver doubles as 'local' keyboard encoder
- Full compatibility with CT2015 and ML2000 series (see Features Block, below)

FEATURES BLOCK

It may be that the designer would like to add to his system some special feature which can be activated from local or remote control. Our ML2000 series is designed to work with the ML1900 series to meet just such a requirement, allowing the manufacturer to add that individual touch to his product range. We will be happy to discuss this type of development. These special Features circuits are designed to be controlled externally from the Keybus with the minimum of external components.

Circuits already in development are:

- ML2001 Keybus/Mibus interface for teletext and viewdata
- ML2020 12 or 24 hour crystal clock (LED and/or on-screen display)
- ML2040 On-screen display (includes channel name, e.g. S14)

SYSTEM CONFIGURATIONS A Basic CT2014 System

A system giving local or remote selection of up to 32 programmes is shown in Fig.3. Channel information is stored in the non-volatile memory by a 14 line digital input. This configuration is well suited to the rental market.

Many viewers, once their television set has been 'tuned' to certain stations, prefer to select just programme numbers. The configuration shown in Fig.3 allows the programme memory to be set up by using switches (as shown in Fig.4) to enter details of transmission standard, channel number, fine tuning and the signal tracking option (Auto). Of course, since the Key System uses frequency synthesis, the stations required do not have to be transmitting in order to initialise the programme memory. Having programmed the memory, if access to the switches is prohibited, this tuning information is fixed in the non-volatile programme store. Thus, accidental off-tuning of the set is not possible. Access to the fine tune and Auto switches allows re-tuning limited to the correct channel only.

If only one Key is used then the switches for KEY SELECT are not required. The particular Key chosen, depends on the market region being served.

To fill a memory location, first the particular programme number is selected, then the appropriate Key and the desired channel number are set up on the switches. Closing the TUNE switch causes the Key and channel number to be written in the selected memory location. In most cases, this will be all that is required. However, if

Fig. 4 Switches to initialise the programme memory

for any reason the transmitted signal is not exactly in the centre of the channel, then the system can be tuned to an off-centre frequency by using the manual fine tune switches. These enable a tuning correction to be stored in the memory location in 50kHz steps from -3.9MHz to +4MHz of the channel centre.

These switches have immediate effect on the picture and programme memory. They operate with roll over at end of channel, so it is impossible to tune outside the desired channel.

If the transmitted signal is likely to drift, the Auto bit may be set in the memory location. This will activate the Auto Mode, fine tuning the system using AFC (whilst remaining in the phaselocked loop), every time that particular programme is chosen.

Programme selection can be either by local or remote control; the input used is five bit binary.

Fig. 3 A single-standard CT2014-controlled system

Multistandard CT2014 control

The Control Block in Fig.5 is similar to the one in Fig.3, the difference being that the user is allowed local control of channel and fine tuning. Up to 32 programmes can be selected from local or remote control. Fine tuning can also be controlled remotely with the addition of some logic.

Fig.5 shows how the basic system, already described, can be expanded. The method of initialising the programme memory is as before but, in this case, the viewer may be allowed to directly change Key (standard), channel or fine tuning information allocated to a programme number.

Up to four Keys can be added to the Keybus, giving a multistandard system. This option is also available with CT2015 control.

The method by which the Key and channel tens and units are selected is optional. Either BCD switches, or a running counter can be used. However, single pole switches may be preferable if the user is not allowed access to these switches. If the viewer is permitted to select a station by channel number then one or several memory locations can be allocated for such use. The new channel information can only be tuned to and stored in the memory when TUNE is enabled. If a STORE command is required instead of automatic programme update, then a CT2015 configuration should be used (see Figs.7 and 8). If no

programme store is required then, as in all Key System configurations the non-volatile programme memory may be omitted.

The channel number and fine tuning information stored in the memory can be accessed via the Control circuit by the 5 bit programme number. This input is well suited to remote control interfaces. The CT2200 is again used to display the selected programme number whilst a 7447 is used to display the Key and channel numbers chosen.

As already indicated, it may be desirable to place the switches for Key and channel number away from the front of the set. The TUNE button is required to update this information, so it too may be concealed for the purposes of everyday operation of the receiver. The FINE TUNE UP, FINE TUNE DOWN and AUTO push button switches do not affect the channel number accessed, therefore they may be left on the control panel of the set. Both fine tune switches operate with 'roll over' within the 8MHz channel as does the AUTO switch. If a viewer has difficulty returning to a signal which he has tuned away from, he can return by keeping one of the fine tune switches depressed or by simply pressing the AUTO button. Any fine tune adjustments and the AUTO command are automatically stored in the nonvolatile memory against that programme number.

Fig. 5 A multistandard CT2014-controlled system

Microprocessor control

We have already indicated that the Synthesiser Block (CT2010, CT2012 and CT2017) is very well suited to a microprocessor application, an example of which is shown in Fig.6.

The Control Block is connected to the Synthesiser Block via the Keybus as before. One Key is programmed into the microprocessor (CT1650A/ PIC1650Z-20). Features available are manual and auto fine tuning, channel and programme selection, plus a channel sweep. Remote control can be expanded from programme selection to operating the other features.

The CT2014 provides several configurations which are ideal for the European Market or others where station selection is by programme number. The CT1650A/PIC1650Z-20 gives a little more, for markets where sometimes channel numbers are used for tuning by the viewer, but usually all that is required from remote control is programme selection. As well as local or remote control of up to 32 programmes, push-button local controls allow channel selection, channel sweep, fine tuning, AUTO selection and programme step. This version fills the gap between the simple and comprehensive frequency synthesis systems.

It will be observed that no Key circuit is present in this application. This is because the CT1650A/PIC160Z-20 has an internal 'key', for PAL B and G.

To initialise the programme memory, first select the required location then the channel number (by Channel Tens Step and Channel Units Step). If the station is off-centre then any necessary fine tuning performed is also automatically stored. Similarly if AUTO MODE is selected, the AUTO bit is set for that programme. Again, because of the automatic programme information update feature in this system, it is recommended that either the programme memory is disconnected or a special location is allocated for temporary channel tuning.

Fig. 6 A microprocessor-controlled system

Multistandard CT2015 system

The configuration of the Control Block shown in Fig.7 allows full control of all features, which are: direct channel and programme selection, manual and auto fine tuning, sweep, store, channel tens and units stepping, programme stepping, and selection of up to 4 standards (by using the Key circuits).

The CT2015 control also allows other devices to be added to the Keybus, for example, clock, Teletext/Viewdata interface and on-screen display.

The CT2015 control circuit gives the manufacturer the ability to configure his own system, which in terms of features and performance leads the market. It is the most versatile of the Key System control options.

The CT2015 interfaces, through the Keybus,

with the ML1910—a remote control receiver which doubles as a keyboard encoder. The ML1900 remote control series is briefly described later in this edition of Keyway and, together with the ML2001 (KEYBUS/MIBUS interface), more fully in Keyway 5.

The features offered with the configuration shown in Fig.7 are: direct channel and programme selection, channel and programme stepping, channel sweep, store command, manual and Auto fine tuning (again, 50kHz step), control of a teletext decoder, control of a clock, six analogues, 32 programmes, storing fine tuning adjustments and 'Switch to Auto' command, choice of up to four transmission standards, and standard, channel and programme number displays.

Fig. 7 A multistandard CT2015-controlled system

Single Standard CT2015 system, with full remote control

The system configuration of Fig.8 shows how the system illustrated in Fig.7 can be converted to full remote control. The CT2200 and 7447 display drivers have been replaced by the ML2040, which of course could have been used in the previous system. The Key circuit could be any one of the CT2030 series. The choice depends on the market which the system is designed for. More Keys could be used if a multistandard system were to be required.

The 'logic that controls the Keybus in the CT2015 enables other Features Block circuits to be added to the Keybus, for example, the ML2020 clock circuit. By 'polling' round the devices, the CT2015 allocates use of the Keybus to such circuits in turn, according to a priority setting in each Features circuit.

The features offered with this configuration

are: direct channel and programme selection, channel and programme stepping, channel sweep, store command, manual and Auto fine tuning (again 50kHz step) six analogues, 32 programmes, storing fine tuning adjustments and 'switch to Auto' command, choice of up to four transmission standards, and standard, channel and programme number on-screen displays.

All of the tuning features available in the configuration of Fig.7 are also present in this system, with the addition of the remote control facility. The local and remote keyboards can be identical as each is capable of initiating the full 288 command instruction set which is possible with the ML1900 series.

A possible Keyboard with transmitter codes (F is MSB) is shown in Fig.9.

Fig. 8 A CT2015-controlled system incorporating full remote control
110	101	100	011	010	001	000	
1 2STANDARD 3	AUTO	FINE TUNE UP	FINE TUNE DOWN		¹ INCR DAY ² CH.SWEEP ³ REVEAL ⁴ REVEAL	(111000)	CBA 000
A SHIFT	3-	7	8	9	¹ INCR HRS ² CH.T.STEP ³ FULL PAGE ⁴ FULL PAGE	1 2 3 4TAPE WRT	001
	2	4	5	6	¹ INCR MINS ² CH.U.STEP ³ 2xht TOP ⁴ 2xht TOP	2 3 •TAPE READ	010
	1-	1	2	3	¹ START CLK ² STORE ³ 2xht BTTM ⁴ 2xht BTTM	1 2 3HOLD 4RING OFF	011
ANALOGUE 6	PROGRAMME STEP UP	1 2 3TMD.P.OFF 4 *	\odot	2 3TMD.P.ON 4 #	¹ ² ³ UPDATE ⁴ UPDATE	1 2 3MIX 4MIX	101
	PROGRAMME STEP DOWN			MUTE			1
ANALOGUE			ANALOGUE	ANALOGUE			1
ANALOGUE			ANALOGUE	ANALOGUE			1

Fig. 9 A possible keyboard with transmitter codes

Summarv

The Synthesiser Block (CT2010/12/17) contributes the following features:

- 'Exact' tuning in 50kHz fine tuning steps
- Delay-tolerant modulus control
- Sensitive prescaler
- Power-low detector
- No extra screening required
- Signal quality detector

Key circuits (CT2030 series) give:

- l standard per "Key" 100 channels per "Key" .
 - —required division ratio
 - -channel name
 - -band

Control Circuit options

The facilities available with the various control circuit options are as follows:

CT2014

- Choice of single or multistandard system
- ò Remote control programme selection option
- Limited use of Features Block circuits
- . Direct channel and standard selection (BCD input)

CT2015

- Choice of single or multistandard system
- Remote control selection option
- Full use of Features Block circuits
- Direct channel selection
- Direct programme selection
- Store command
- Channel sweep
- •
- Channel tens/units step Programme step up/down
- Keybus control logic

CT1650A/PIC1650Z-20

- Single standard microprocessor system
- Direct channel selection (tens and units steps)
- Programme number step
- Channel sweep
- Remote control selection option
- Limited use of Features Block circuits

APPENDIX 1

THE KEY SYSTEM – FREQUENCY SYNTHESIS FOR TELEVISION

The Basic Loop

The Plessey Key Frequency Synthesis System is based on the principle of the phase locked loop (PLL). A basic PLL is shown in Fig.1. In this case the output, f_o , from the voltage controlled oscillator is divided by a number, N, to give a convenient comparison frequency, f_c . The other input for comparison is the reference frequency, f_r , derived from a frequency standard.

Fig. 1 Basic phase-locked loop

The phase comparator produces a voltage which is fed back via a filter to the voltage controlled oscillator. This feedback loop enables the local oscillator frequency, f_{c} , to be phase locked to the reference frequency, f_r . Thus:

$$f_o = N.f_c$$

and when phase lock occurs, $f_c = f_r$. so

$$f_o = N.f_r$$
 (1)

By choosing an appropriate reference frequency, f_r , and a suitable divider whole number N, we can now synthesise a series of frequencies, f_o , in steps of f_r . However, such a basic loop gives a very limited range of frequencies.

A Simple System

A simple practical system is shown in Fig.2. In this case, an output from the varicap controlled local oscillator is divided down by a fixed prescaler of division ratio, A, and a programmable divider of division ratio, N, to a convenient comparison frequency, f_c . An accurate stable frequency, f_r , is established by dividing down the output of a crystal oscillator. The two frequencies, f_c and f_r are compared by a phase/frequency comparator and a voltage is fed back via an active filter to the local oscillator. This feedback loop enables the frequency of the local oscillator, f_o , to be phase locked such that

$$f_{o} = \frac{N.A.f_{x}}{n}$$
 (2)

where f_x is the frequency of the crystal oscillator and n is the ratio of the fixed divider that follows it.

The programmable divider is controlled by the channel selector. Thus, when a certain channel is selected the selector would provide the required divider ratio code to the programmable divider making the value of N to be such that f_o becomes equal to the required local oscillator frequency to receive the channel allowing for the offset due to the intermediate frequency (IF).

Since each channel requires a certain band in the tuner, the channel selector also provides the correct band select code to switch the tuner to the corresponding band.

The stability of the frequency setting of the local oscillator will be entirely defined by

$$\frac{N.A.\Delta f_x}{n}$$

where Δf_x is the stability of the crystal oscillator.

We thus have a very useful system of tuning TV channels with the accuracy and stability of a crystal oscillator.

With the simple system shown in Fig.2, the local oscillator frequency can be preset to any value in steps of

$$\frac{A.f_x}{n}$$
 or $A.f_r$

Fig. 2 Simple practical synthesiser

Thus A and f, determine the value of the frequency step that can be achieved in the system. The value of fr is dependent on the following factors:

- 1. the lock up time of the phase locked loop to the selected channel. Normally this should be 200ms max.
- 2. the ripple on the varactor line should be low enough not to cause any noticeable pattern on the screen.
- the loop should not oscillate under any condition.

Considering these factors the value of f_r is normally limited to 2kHz minimum. Having decided on the value of f, the value A is automatically set for a certain frequency step requirement in the system. For example, for a frequency step of 50kHz and $f_r = 2.5 \text{ kHz}$.

$$A = \frac{50}{2.5} = 20$$

Now the local oscillator frequency in a TV tuner can be up to 1000MHz, and this would mean having a programmable divider input frequency of

$$\frac{1000}{20} = 50 \text{ MHz}$$

which is rather high.

The Key System Principle

The Key Synthesiser uses a two modulus divider after the prescaler and before the programmable divider. This gives a much more manageable input frequency and control function. The modulus control is designed so that it can tolerate delay in the control loop and distortion in the control waveform. The positive going edge of each control pulse is only used to change the divider modulus during one complete cycle of its output. Fig.3 shows the block diagram of the Key Synthesiser.

The two modulus divider divides by a ratio, M, unless it has received a control pulse, when it divides once by a ratio M-1. For each complete output cycle of the programmable divider there are N complete input cycles fed to it from the two modulus divider. If, during these N output cycles of the two modulus divider it receives P pulses to its modulus control, it will divide by M-1 for P output cycles and for N-P output cycles it will divide by M. So for N output cycles of the two modulus divider, the number of input cycles is:

P(M-1) + (N-P)M

After division by the programmable divider, $\div N$, this number of cycles produces one cycle at the input of the phase comparator.

When the loop is locked the local oscillator frequency, f_o, is given by

$$f_{o} = A \left[P(M-1) + (N-P)M \right] f_{r} = (M.N-P).A.f_{r}$$
(3)

An incremental change in the number of pulses, P, to the modulus control will thus change the local oscillator frequency, f_o , by a step A.f_r. In the Key System the prescaler, A, is ÷20 and the reference frequency at the comparator is 2.5kHz giving an incremental frequency step of 50kHz.

Fig. 3 Simplified Key System Synthesiser Block diagram

The two modulus divider gives \div 19 or \div 20 so that the maximum frequency into the programmable divider is only

$$\frac{f_o}{A.(M-1)} = \frac{1000 \,\text{MHz}}{20.(19)} \approx 2.6 \,\text{MHz}$$

and the local oscillator frequency in equation (3) above now becomes

$$f_o = N MHz - 50.P kHz$$

So N may be used to define a frequency as a whole number of MHz and P need only have a value 0 to 19 giving 20 steps of 50kHz between values of N. In practice not only does an original frequency need to be defined, but also any manual or automatic frequency correction. This gives

$$f_o = (Q + 1 - Q_c)MHz - 50(P + P_c)kHz$$
 (4)

where O is the frequency number (10 bits)

Q_c is the frequency number correction (3 bits) P is the fine tuning number (5 bits)

 P_c is the fine tuning number correction (5 bits)

The programmable divider counts down from the loaded number, Q, until it reaches the correction number, Q_c, when it takes one cycle to synchronously reload and the whole operation repeats.

When a channel is entered initially

$$Q_c = 4$$
 and $P_c = 0$

so if TV channel 21 in standard G were required for example, then C

$$Q = 514 \text{ and } P = 17$$

which gives

$$f_{o} = (514 + 1 - 4)MHz - 50(17 + 0)kHz = 510.15MHz$$

It is also possible to correction tune around the original channel frequency with a range of -3.95 MHz to +4 MHz in 50 kHz steps. This is achieved by using P_c to provide a further 0 to 19 steps of 50 kHz and Q_c to provide 0 to 7 steps of 1 MHz. The values of Q, Q_c, P, P_c and the band selection code are obtained via the Keybus with the appropriate tuning commands.

APPENDIX 2

KEY SYSTEM DEVICES

		Typical Supply Voltage	Typical Current
Synthesise CT2010	r Block 1 GHz, 2 Modulus Divider ÷ 380/400; 10mV	5V	90mÄ
CT2012	Input PLL Synthesiser; crystal reference; programmable divider; phase comparator. Keybus (4 bit data highway & multiplex cleab) input	5 V	25 m A
CT2017	Tuner interface—varicap control—station detector; AFC control; power low detector.	5V 12V 33V	12mA 9mA 4mA
Key Systen CT2014	n Control Circuit Options Digital Switch entry, Control IC. Up to 32 programmes, 400 channels and 4	5V	15mÅ
CT2015	standards. Manual and auto tine tuning. Control IC with full remote control interface. Up to 32 programmes, 400 channels and 4 standards. Manual and Auto fine tuning; channel sweep. Kaybus control	5 V	20mA
CT1650A/ PIC1650Z-20	Microprocessor Control. 32 programmes, 100 channels and 1 standard. Manual and Auto fine tuning, channel sweep.	5 V 9 V	35mÅ 1mÅ
Key Circuit	ts		
CT2030 CT2031 CT2032 CT2033	Each CT2030 series integrated circuit is a ROM for 100 channels with frequency and name information via Keybus. Key 0 can be interfaced with an ER1400 non-volatile programme memory. European PAL Key European SECAM Key North American NTSC Key British Isles PAL Key	5V	6mA
Programme	e Memory		
ER1400/ NC7400	Non-volatile memory, stores channel number, transmission standard and fine tuning information for 32 programmes.	9V and - 26V OR 12V and - 23V	5mÅ 5mÅ
Remote Co	ntrol		
ML1900	Remote Control Transmitter; 6 bit PPM; 56 codes; burst mode output. Remote Control Receiver: 6 bit PPM: 56	9V Standby 5V	2mA 1µA 35mA
MAISIO	codes; 55 code local input; 6 analogues with 63 levels; 32 programmes; total of 288 commands (via Keybus).	51	JUIK
Display Dr	ivers		
CT2200 ⁻ *ML2040	32 Number LED Display Driver, drives two 7 segment common anode LED arrays, 5 bit binary input; 1-32 display output, 20mA per segment; 13 direct drive outputs. On Screen Display, displays programme and channel number, channel name, time and day. Control via Keybus; display and	5V	3mA
	blanking output.		
Miscellane *ML2020	ous 7 day clock, quartz crystal controlled; 12/24 hour with day, hour and minute setting		
*3.57 0001	output via Keybus or direct drive to LED displays.		
ML2001	reletext/Viewdata Interface, allows Mibus control from Keybus.		
"Further deta	uls to be announced.		

.

YOUR OWN SYSTEM

CT2010, CT2012, CT2017	Synthesiser Block	
CT2014, CT2015, CT1650A	Control options (choose one)	
ML920 series, SL480, SL490 ML1900	Remote Control (see Consumer News V Remote Control Transmitter	ol.2, No.2) (see Keyway 5)
ML1910	R/C Receiver and Keyboard Encoder	(2000000100100100)
ML2000 series	Features Block circuits	
CT2030 series CT2200	Key circuits (ROMs) 5 bit binary input, 1-32 display driver	

3. INFRA-RED REMOTE CONTROL

•

44

INFRA-RED REMOTE CONTROL SYSTEMS

To offer remote control as a means of achieving additional sales is fairly widespread these days, with cost prohibitive factor in some cases. At first, wired connections were used, and still are, for example, cheap remote control toys, TV games, slide projectors etc. Then came ultra-sonics, and finally in the past few years, the switch to Infra-red.

Infra-red systems offers several advantages over radio and ultra-sonic equipment in certain applications. No licence is required-signals can be easily confined by walls - or directed by narrow beams. Infra-red transmissions are not subjected to electromagnetic interference, infra-red noise is very rare in factories, offices or houses and if the signal is modulated, then corruption by flicker is very unlikely. Radio links, on the other hand, may be affected by many sources of interference, and in some applications, e.g. toys, the potentional hazard of aerials as a spike to a childs eyes should be avoided. Ultra-sonic links suffer from multipath interference and can also be affected by spurious noise generation, for example bells and jingling coins or keys.

An infra-red link consists of a modulated source driving a light emitting diode which radiates at a wave length in the infra-red region (850 to 970nm). The light is transmitted through an optical system which may flood an area or concentrate the energy which is amplified and decoded to recover information that was transmitted. A basic system is shown in Fig.1. Energy levels are, typically, only a few milliwatts and therefore harmless.

Applications have been developed for both nearrow and broad beam systems. Broad beams are used for "anywhere in a room" controls, for example TV, teletext and viewdata controllers, garage doors, light dimmers, toys, slide projectors and hi-fi units. The range for broad beam systems can be between 12 to 30 meters, where choice of emitter diodes, quality of components used and pcb design, will determine the ultimate range obtained. Narrow beams on the other hand, are particularly suitable for industrial controls, security systems, computer peripheral and TV transmitter links. The range for narrow beam systems may be half a mile or more and, as these units can be designed to have a spread of no more than 10ft in 2000ft, and are virtually independant of weather conditions, they are excellent for building-to-building work particularly in data and TV transmission.

Plessey Semiconductors Limited have developed a range of remote control circuits tailored to various requirements in the TV, Industrial, Professional and Consumer market sectors.

Data sheets on the various integrated circuits involved are available on request, together with suggested circuits on a number of domestic applications.

Integrated circuits involved are as follows:-

- SL490 Easily extendable 32 command PPM transmitter drawing negligable standby current
- SL491 As above, but PPm transmission is in burst mode instead of in a continuous fashion.
- SL480 Infra-red pulse preamplifier containing 3 amplifier stages, the gain of each being capable of adjustment, to suit the application.
- SL470 Capable of decoding up to 10 programmes and incorporates direct varicap voltage selection and TTL level compatible inputs.

The following are Receiver chips that demodulates the PPM signal transmitted by the SL490/491.

- ML920 20 programme memory, 3 D/A converters plus 6 other facilites.
- ML922 As above, but with only 10 programme memory.
- ML923 16 programme memory, 1 D/A converter plus 6 other facilites.
- ML924 5 digital outputs whose response to PPM codes be programmed by 6 control lines. Has a handshake interface which provides communication with microprocessors and computers.
- ML925 Designed to control either a toy vehicle with 2 speed drive motors and a three position latching steering system, or a vehicle with momentary action steering and a third motor, typically a winch.
- ML928/9 General purpose receivers, latching 16 of the 32 codes transmitted by the SL490/1. The ML928 responds to codes 00000 to 01111 and the ML929 to codes 10000 to 11111.

ML926/7 - As above, but with unlatched outputs. Other components needed for an infra-red system are the emitter diodes and the photo diode. The photo diode used is a highly critical component. Several manufacturers have developed photo diodes for use in the infra-red region-the characteristics of one such device is shown in Fig.2. This is a low leakage p.i.n. device with planar construction; the active area is 7.5mm². A silicon nitride layer over the chip acts as both a passivating coating and an efficient anit-reflection layer. A dye in the plastic housing transmits well in the near infra-red part of the spectrum (700nm to 1100nm), but is strongly absorbant to visible light (400nm to 700nm). The spectral response of silicon, in addition, is higher in the infra-red than in the blue green region. Planar construction keeps the reverse leakage current low, which is very important in small signal applications.

Usable signal to noise ratios can be achieved with photo current as low as 10nA provided the load is carefully chosen.

Many alternative infra-red high efficiency L.E.D's are available; typical emission characteristics are also shown in Fig.2. Increased sophistication of epitaxial techniques is likely to mean that increased power conversion efficiency will be available over the next few years. It is usual to drive these L.E.D's with pulses of current which peak at much higher than rated values, keeping the duty cycle such that mean rated power is never exceeded. In this way transmission distances are increased.

Transmitter Chip SL490

Fig.3. shows the circuit for a simple infra-red transmitter where the PPM output pin 2 of the SL490 is fed to the base of the PNP transmitter TR1 via R1 and R2, producing an amplified current pulse in the collector about 15usec wide. The pulse is further amplified by TR2 and applied to the infra-red diodes D1 and D2.

The current in the diodes and the infra-red light output is controlled by the quantity, type, and connection method of the diodes and also the gain at high currents of the transistors.

The common solution where cost is important is to use 2 single chip diodes, such as the Siemans CQY99 CONNECTED SERIES.

Improved output can be obtained by using four CQY99 diodes in a series parallel arrangement, but is usually simpler to use 2 multi-chip diodes such as the Telefunken CQX47 connected to parallel or single CQX19 which gives similar results.

A significant increase in range can be obtained by using diodes such as the CQY99 in conjunction with a plated plastic parabolic reflected

When building the transmitter, care should be taken with the choice of the capacitor C2 and with the circuit layout, particularly when multi-chip diodes are being used, as the current pulses can be as high as 6 to 8 amps.

Transistor choice is also important and any substitues should have high current gain characteristics and switching speeds similar to those specified in Fig.3.

An increase in output can be obtained be reconnecting TR2 in a common emitter mode, but care should be taken not to exceed the rating of the diodes.

Choice of PPM Frequencies

Although the ML920 series of remote control receivers is designed to work over a wide range of PPM frequencies, the actual usable range may be resricted by the application. The analogue outputs on the ML920, ML922 and ML923 serve as a good example, since the outputs will step up or down, one step for each pair of PPM word received. This in turn fixes the rate of increment or decrement of the volume or color controls of a TV set.

When the transmitter is being used with an infra-red link, with high current pulses fed to the diodes as in Fig.3, power consumption will increase with frequency. It is thus advisable that with a battery power supply, the slowest PPM rate consistant with adequate response time, should be chosen.

Setting Up Procedure

When designing a system using the SL490/491 transmitters and the ML20 series receivers, it is not necessary to adjust the PPM rate on both transmitter and receiver. The usual arrangement is to have a fixed resistor of 33K from pin 16 of the SL490/491 and to choose the capacitor connected for pin 16 to pin 17 to give the required PPM rate. The value is calculated from the formula 'to' = 1.4CR. Provided fairly close tolerance components are used for C1 and R1, then assenbled transmitter units should be interchangeable without adjustment.

The timing components on the receiver can be selected using the formula frx = 1 where frx = 40 , 'to' being the P.P.M. logic "0" time from the transmitter. 0.15CR

The value of R for the receiver should be between 47K and 200K, a typical arrangement being to use a 47K resistor and a 100K pot as shown in Fig.4. The capacitor should be selected from the above formula to give the nominal frequency somewhere near the mid-range setting of the potentiometer.

Final adjustment is made by setting the period on the receiver oscillator time constant pin to 1/40th of the transmitter P.P.M. logic "0" time using the potentiometer. Connection to the receiver time constant pin should be made using a x10 oscilloscope to reduce circuit loading.

When adjusting the ML920, the monitor output can be used for setting up, but in this case, a figure of 1/20th of the transmitter P.P.M. logic "0" time should be used as the mirror output is at half the oscillator frequency.

Fig. 3. Infra-red Transmitter

Fig. 3. Common Emitter Arrangement

Fig. 4. Recommended Receiver Time Constant Components

The SL480

The circuit diagram of the SL480 infra-red pulse amplifier is shown in Fig.5. Pulses generated by a infra-red receiver diodes are amplified to a suitable level for direct connection to the input of any of the Plessey Semiconductors ML900 series of remote control receiver circuits.

For basic operation, the receiver diode and SL480 input is biased with a single resistor to the positive supply as shown in Fig.6. Any infra-red light reaching the diode generates a leakage current which causes a voltage drop across the bias resistor.

The SL480 Input stage consists of a compound emitter follower (TR1 and TR2) which provides a high input impedance and allows a relatively high diode load resistor as well as a voltage drop of around 1.3V between the input and the bases of the first amplifier stage (TR6,TR7).

Transistors TR6 and TR7 form a differential amplifier which is designed to prevent low frequency or D.C. input signals from reaching subsequent stages of the amplifier. Since the bases of transistors TR6 and TR7 are internally connected by the 6.3K resistor R3 low frequency signals are applied to both sides simultaneous causing no change in collector current and therefore no output to the second stage. Higher frequency signals are amplified because TR7 base is decoupled externally on pin 7.

Stage 2 gain is provided by a similar differential amplifier to stage 1 except that the relativity stable d.c. input voltage provided y stage 1 output allows the use of a tail resistor R11 rather than a current source. Decoupling of A.C. signals is provided at pin 8.

Stage 3 is similar to stage 1, but with a extra current mirror (TR24 to TR26) to provide signal inversion at the output

The standing current in the output load resistor and thus the output voltage, is set by the current in R15. This current will amount to about 100μ A, and give an output voltage about 5V below the positive rail with a 15V supply.

It should be noted that there is a parasitic zener diode of about 6V in parallel with the ouput load resistor R19, this will be destroyed if the output is shorted to the negative supply rail. Stage 3 decoupling is provided at pin 1.

With a 15V supply, the input stage will operate with input voltages ranging from 15volts down to 5volts. This will allow the device to function satisfactorily in high ambient light conditions which produces high leakage currents in the receiving diode. A single transistor circuit is shown in Fig.3, which prevents the input voltage to the SL480 changing for diode leakage currents up to several miliamps. By carefull choice of R & C values, this circuit can be made to give extra rejection of low modulation such as that produced by incandescent lamps.

If required, the gain of each of the SL480 can be set individually by connecting a resistor in series with the decoupling capacitor. A 6K resistor will reduce the stage gain to half its full value of about 40dB. Normally it is only necessary to reduce the gain of the second stage with about 33-56K.

As with any high gain device, care is needed in the layout of printed circuit boards to prevent instability. All decoupling and input components should be mounted close to the SL480.

Decoupling of the power supplies local to the SL480 is advisable. Aresistor of about 560 Ω in series with the negative rail and a parallel capacitor of 68µF being adequate (See fig.7).

The decoupling resistor should always be in the negative supply as the ML920 series remote control circuits have a threshold close to the positive rail, and any voltage drop here would reduce the noise immunity.

Fig. 6. SL480 with simple bias for the Detector

Fig. 7. Typical Infra-red Amplifier application with ImprovedDetector Biasing.

4. REMOTE CONTROL FOR TOYS

.

The new remote control circuits now available are the SL470 10-programme decoder for high voltage varicap line drive; the SL490 infra-red preamplifier with direct drive for the ML920 series; the SL490 remote control transmitter; the ML920

The new remote control circuits now available are the SL470 10-programme decoder for high voltage varicap line drive; the SL480 infra-red preamplifier with direct drive for the ML920 series; the SL490 remote control transmitter; the ML920 20-programme remote control receiver; the ML922 remote control receiver providing three analogue outputs, 10 latched programmes and on/standby, mute etc; the ML928 remote control receiver/encoder providing four latched outputs controlled by 16 transmitter commands; the ML929, basically similar to the ML928 but operating on a different set of 16 transmitter commands; the ML926, similar to the ML928 but giving momentary, unlatched outputs; the ML925 for motor control in toys and models and, available soon the SL491 for burst mode transmission.

SL470

This device decodes up to 10-programmes, incorporates direct varicap voltage selection and TTL level compatible inputs. It can be directly driven by the ML922 receiver and has a low component count for low cost applications.

SL480

The SL480 is a bipolar integrated circuit containing three amplifier stages. Its output is directly compatible with the ML920 range of remote control receiver circuits, and it is in an eight lead plastic package. A feature of the device is that the gain/bandwidth of the amplifier stages can be adjusted to suit the application (see Fig.1).

Pin functions, SL480

- 1. Decoupling point
- 2. Output decoupled with capacitor and fed directly to receiver PPM input.
- 3. Positive supply
- 4. Detector input
- 5. Not used
- 6. Negative supply
- 6. Negative supply
- 7. Decoupling point
- 8. Decoupling point

SL490

The SL490 remote control transmitter is an easily extendable 32 command, pulse position modulation transmitter which draws negligible standby current. It can be used effectively with any ML920 series remote control receiver.

The ML490 pulse-transmitting remote controller, used in conjunction with the ML920 receiver offers the possibility of controlling up to 20 television programme selections, brightness/volume/color control in up to 32 steps, and a number of other functions both for television use and elsewhere.

A wide variety of domestic, commercial and industrial appliances can be controlled by the SL490/ML920 combination. Apart from use with television and toys the system can control such diverse equipment as, for example, radios and tuners, tape and record decks, garage doors, automatic telephone answering machines and slide projectors.

ML922

This device demodulates the PPM (Pulse Position Modulation) signal received from the SL490 transmitter. The ML922 was originally designed for television remote control systems but can easily be adapted for use in radios, tuners, tape and record decks, lamps and lighting, industrial control and monitoring, and toys and models.

The ML922 demodulates the PPM signal received from the SL490 and after error checking the received code can condition a 10-programme memory or one of the three D/A converters, the output of each having its normalised level at three eighths of maximum

The receiver timing can be set by adjusting the oscillator time constant to give 40 periods at pin 6 equal to a 0 interval on the received PPM input.

ML920

The ML920 is a 20-programme version of the ML922, but has (in addition to the facilities offered by the ML922) a 'recall' output which can be used to trigger an on-screen display in TV applications.

ML928 and ML929

Both these devices are general purpose remote control receivers each designed to receive and latch 16 of the 32 codes transmitted by the SL490 circuit as 5-bit PPM.

The ML928 responds to codes 00000 to 01111 only, and the ML929 responds to codes 10000 to 11111. Both devices are packaged in 8-lead plastic DIL to minimise board area. The on-chip oscillator can be adjusted from 15Hz to 150kHz, allowing different transmission rates.

Both devices have a high degree of immunity to incorrect codes; there must be two correct and consecutive codes received before the outputs can change. As with ML922 these devices were initially designed to be used with television remote control. They have, however, a wide range of applications, particularly in toys.

ML926

This device has momentary outputs. Normally low (off) selected outputs go high (on) during reception of the appropriate code. After transmission has finished the outputs return to the low state. The device is similar to the ML928 except for its four positive logic unlatched outputs.

ML925

Up to three independent motors, as well as lights, flasher and horn, may be driven by this 18-pin device. Four speeds are possible with both forward and reverse giving a very flexible toy or model controller.

Fig.1 SL480 high gain pulse preamplifier

SL490 remote control transmitter

General description

The SL490 is an 18-pin bipolar, remote control, pulse transmitting monolithic circuit for use with the ML920/ML922/ML926/ML929/ML925/ML926 receivers.

Single pole switches arranged in a 4 x 8 matrix of 32 keys (1 out of 4 and 1 out of 8) are encoded by the device which then may give either a modulated carrier frequency from an on-chip oscillator or a DC pulse output. A standby current of only 6uA or so is taken from a 9V supply by the device until any switch closure is detected. In this system of PP3 battery has a working life approaching the length of its shelf life.

The modulated output can drive an ultrasonic transducer directly and be tuned to the natural resonant frequency of the crystal, thus enabling inexpensive transducers to be used.

A five-bit pulse position modulated signal is used, giving 32 basic commands which can be used in a TV remote control system to select 20-programmes, control 3 analogue functions and provide 6 additional switching functions.

Apart from the battery, switch matrix and transducer, only three capacitors and two resistors are needed externally. A single RC selects carrier options and defines frequency, the other RC defining the modulation rate.

Output capability is direct ultrasonic transducer feed, and complementary outputs with or without active pullups. Continuous or pulsed visual indication can be driven directly from pin 2. The carrier oscillator can be disabled for pulsed operation of infra-red, and more than one set of 32 commands can be used by changing the modulation rate and carrier frequency.

Despite the comprehensive range of facilities offered by this remote control system, the SL490 makes the transmitter a very simple unit. Fig.2. outlines the block diagram of the transmitter.

Circuit Operation

The device transmits a code word as a group of six pulses, and each of the five intervals between these pulses can take up one of two possible values, a short interval corresponding to a '1' or a long interval corresponding to a '0'. Fig.3 shows the timing relationship between the pulses '1', '0' and 'S' - the space or synchronisation gap between words.

The ratio of the intervals representing '1', '0' and 'S' is 2:3:6 and is fixed by the device. In addition the width of the pulse is about one sixth of a '1' interval or 1/3:2 on the above ratio scale. In this way 32 different codewords can be transmitted by the 5-bit code.

A particular codeword is selected by switching one out of four current sinks (one of these current sinks is 0V). All decoding is done by the integrated circuit as in Fig. 2.

The circuit draws only about 6uA from the supply until a switch closure is detected, at which time power is applied to the whole circuit. The appropriate PPM code is then generated repeatedly until the switch is released, and the device reverts to standby after the complete codeword has been transmitted.

Fig. 4 and 5 show the output voltage waveforms obtainable. Fig.4. shows a lower than normal carrier frequency compared with the pulse width. This is done for clarity although the device would operate satisfactorily with such timing.

For infra-red operation a two transistor amplifier is used to feed very narrow high current pulses to gallium arsenide infra-red diodes, such as two Plessey GAL32B. If a higher output is required three or four GAL32C diodes can be used in parallel. The pulse nature of the signal allows the diode emitter to work at a higher light output efficiency and the battery current to be reduced. Fig.12 shows a circuit for driving infra-red emitting diodes.

The receiver amplifier

At the receiving end of the link the system will need some sort of gain and bandwidth defining stages, before the detected signal is fed to the ML920 series receiver. Usually two, or at most three, amplifier stages are sufficient with some fairly simple active filtering. In the case of the infra-red link the SL480 can be used with an infra-red filter before the photo detector.

For ultrasonic transmission a general purpose operational amplifier may be used for the front end. After filtering and amplifying the ultrasonic frequency, a simple diode detector can be used. The detected PPM can then be fed to the receiver via a buffer amplifier stage. An ultrasonic frequency of between 32kHz and 44kHz should be chosen to avoid the second and third harmonic of the TV line output stage. An inexpensive transducer can be chosen with its natural resonant frequency within this band, and can be driven at its natural resonance to improve power output and simplify loading. The actual bandwidth needed about the carrier is approximately 100Hz. The data rate can be chosen by considering the rate at which the analogue outputs of the receiver are required to step.

If, for example analogue output to sweep its full range of 32 steps in about 10 seconds, this requires one step about every 300ms but because of the receiver error checking code comparator, the transmitter word rate should be set to 150ms (see Table 1). Referring to Fig. 3 it will be seen that if the code word period, including the interword space, is 162ms it will give the required analogue full range change in about 10 seconds. The only adjustment needed in the receiver is to set the oscillator time constant, so that 40 time periods on the oscillator (20 periods on the monitor pin 9 of the ML920) corresponds to a ±0± interval of incoming PPM (Fig.6 and Table 1).

Up to 10 per cent variation in demodulator timing oscillator frequency can be tolerated by each of the transmitting and receiving devices.

Fig.5 PPM output (pin 2) with no carrier

Fig.6 System timing

'O' period (ms)	TX C(μF)	RX C (nF)	Osc. (kHz)
40	0.82	100	1
20	0.47	68	2
10	0.22	33	4
5	0.1	15	8
2.5	0.047	8.2	16
1.25	0.027	3.9	32
0.625	0.015	1.8	64
0.312	0.0068	0.82	128

Table 1 TX and RX Timing

An infra-red link

For most remote control work, infra-red links have advantages over ultrasonic links-less multipath interference, lower spurious radiation, less annoyance to humans and animals, a higher modulation rate capability and more robust transducers. High efficiency, infra-red, light emitting diodes (LED's) are relatively inexpensive and can incorporate both reflector and lens for a more concentrated beam of light.

Multichip assemblies are also becoming more common and these can take fairly high currents. LED's become more efficient at higher currents, and pulse and multiplex systems are common for display work. Thus a PPM system can be made to operate an LED at quite high outputs for a small increase in battery current. Two or three LED's can be connected in series at lower currents, and these emitters can have different orientation on their axes if required.

On the receiver side a photodiode or phototransistor can be used with an appropriate infra-red filter. Fig.7 shows how a photodetector response, although peaking in the near infra-red region, has good detection properties at visible light wavelengths and into the ultra-violet. As the energy emitted from a gallium arsenide LED is, in the main, a narrow band emission at 940nm, a correctly chosen filter will greatly attenuate most of the interfering signals. Other noise sources which have large emissions in the infra-red (for example a tungsten filament lamp) can be rejected by filtering or by carrier modulation of the infra-red link.

Both amplitude modulation and frequency modulation have been used, but neither has the simplicity nor all the advantages that a pulse system can offer in LED driving efficiency and detection economy. Pulse position modulation using a narrow pulse, high current drive to a gallium arsenide LED enables a very good signal-tonoise ratio to be obtained at the demodulator. Reception remains uninterrupted by most external influences. Very bright sunlight or the close proximity of a high output fluorescent gas discharge tube has a minimal effect, especially in the case of the SL480 with its daylight bias arrangement (see Fig.9).

Fig.7 Optical response characteristics

Fig.8 SL480 with simple bias for the detector

SL480 infra-red pulse preamplifier

The SL480 is a low cost, low external component count, front end amplifier for infra-red pulses (see Fig.8 and 9).

It has three gain stages, each with a gain 100, and differential inputs with inverting input bonded out to provide access both for decoupling and frequency determination.

Input impedances are typically 6k, enabling the amplitude and frequency response to be defined by only a few capacitors and resistors.

The output of the SL480 can be fed directly to any ML920 series receiver and gives a positive pulse. A positive common supply should be used between receiver and amplifier for best noise immunity.

The diode is reverse biased and conducts a small leakage current only, the current increasing as light falls on the diode.

All SL480 series devices accept supply voltages from 5V to 18V and have low current demand, typically 1.5mA.

The overall gain is generous; at least one gain setting resistor should be used to avoid any instability problems.

Applications

Fig.10 shows a typical remote control system for infra-red control of a 10 programme television set. An additional SL490 in the set gives full control from the local position as well as the remote keyboard so push button control of the programmes and color brightness and volume is achieved on set. However, such a system may equally simply be applied to industrial communications or model areas with similar advantages.

Fig.10 A typical remote control for TV

The transmitter

As mentioned previously a digital pulse modulation system may be used on almost any link; ultrasonic, infra-red, radio or cable. Figs.11, 12 and 13 show how the SL490 may be applied to three different types of link with very few additional components. In Fig.11 low cost transducers may be used and the transmitter carrier may be tuned on pin 18 to the narrow band resonance point. The complementary output of the device gives double the drive to the load. A fixed value of RC timing has been used at pin 16 to give a data rate of about 6 words per second, necessarily slow for a simple ultrasonic system.

The infra-red transmitter (Fig.12) uses a pulse output with no carrier, from pin 2, at a rate of 20 words per second. C3 and R2 allow the complementary pair, TR1 and TR2, to conduct for about 15 μ s at every negative leading edge of the PPM waveform. Pulse currents of up to 6 amps have been achieved with such a circuit but care should be taken to minimise the impedance of the current path. Connections should be made as short as possible and C4 should be a low inductance type.

When simultaneous operation of more than one transmitter is required (e.g. video games, model racers etc.)

Fig.11 Ultrasonic transmitter direct drive

each signal should be periodically interrupted to allow the other access without jamming. This may be achieved by an externally generated waveform applied to pin 16 of the SL490 or by using the newly developed Plessey Semiconductors Burst Mode Transmitter, the SL491. This circuit has a modified second oscillator on pin 18 to allow multi-transmitter burst mode operation.

In the radio control transmitter in Fig.13 the internal carrier oscillator of the SL490 is inhibited by a resistor of 2.2k at pin 18. The negative pulse output at pin 2 is then used to key a 27MHz crystal controlled oscillator/output stage. The total quiescent current is a few microamps and even when keyed at 50 words per second the duty cycle is only about 15%.

The transmitter will enable both indoor and outdoor operation of various toys and models. A third transistor stage may be used to increase the range.

Various receivers are of course possible, from a multi-channel crystal controlled synthesiser superhet to a three transistor type shown in Fig.14 with just RF amplifier, regenerative detector and output stage which may be directly connected to any ML920 series receiver.

The ML928 remote control receiver is used in this circuit, suitable for controlling tracked models such as military vehicles or earth moving equipment. Either relays (Fig.15) or transistor switches (Fig.16) may be used.

Fig.12 Infra-red transmitter

Fig.13 27 MHz model control transmitter

Responding to codes 00000 to 01111 only, the ML928 receives and latches 16 or the 32 codes transmitted by the SL490 remote control transmitter. Fig.17 shows how the SL480 interfaces with the ML928.

In the field of military models, the tank is a pacticularly good example of a two-motor application for this circuit. Both tracks can be independently controlled, together with (for example) turret rotation and cannon elevation, giving the model accurate scale operating characteristics and versatility.

However, for a more complex control involving up to three motors, lights, flasher and horn the ML925 can be used.

Fig.14 Typical 27 MHz receiver for toys

Fig.15 Relay control of 2 drive motors

Time proportional or 3-position steering

Not only does the ML925 give a multi-function control capability but also several working modes are possible. Two similar models may be operated independently with burst-mode transmission and two sets of command.

Fig.18 shows how the ML925 may be used in an infra-red control system for a truck. The supply rail (pin 1), oscillator (pin 2) and PPM input (pin 3) are standard ML920 series specification. Motor control outputs to 'steering' and 'winch' are momentary outputs while 'drive' is a latched outputs. Only one output pin of the motor drive pair will go high at any one time to give a forward or reverse sense and the 'no-drive' condition exsists when neither pin is high.

An additional oscillator at pin 6 is used to give a flashing output at pin 5 or pin 4. It also produces three different chopped waveforms at the 'drive' nad 'steering' outputs so that four different speeds are possible. Other outputs that may be toggled on or off are 'lights' (pin 13) and 'hazard' (pin 4) which gives a flashing signal. 'Flasher' (pin 5) is a permanently flashing signal and 'horn' (pin 18) gives a momentary output. Pin 15 is used to select either one of two command sets for simultaneous control of two toys.

Another type of model may use 3-position steering where a center position is needed as well as full left or full right. Fig.18 shows how this may be achieved very simply with the ML925. The center steering position is marked by an insulated section with positive and negative supply rails at either end. The sense contact is wired to the steering feedback input (pin 14) of the chip which can then quickly decide to center the steering from either full left or full right positions. For this facility the 'vehicle type selct' input (pin 12) is connected to the positive supply.

'Minimum components' ML922

Fig. 20 shows a simple IR television control using the ML922 remote control receiver. The system provides three primary functions; power, programme and sound. Other functions-mute, step (up or down) intersation AFC defeat, interstation mute-are also available if required.

Oscillator timing is set up as usual with a resistor value of about 50K. The exact value is established by preset adjustment.

This circuit, together with a 5-command transmitter (Fig. 12) gives a low component count, low cost remote control system for analogue and digital functions.

Fig.17 Compact infra-red receiver

Fig.18 Infra-red drive for car or truck

Fig.19 Infra-red drive for car with 3-position steering

Fig.20 Simple IR TV control

5. ELECTRONIC TOUCH CONTROL

Introduction

Electronic touch selection was initially incorporated into TV tuners to overcome most of the difficulties associated with mechanically interlocked switches such as unstable contact resistance and misoperation of the mechanical latching mechanism. These problems increase as more channels are needed and as electronic varactor tuning was introduced electronic touch selection was a natural, partner development.

The primary requirement of any touch system is to sense the impedance of a finger across two selection contacts. A memory and display facility is then used to remember the last selection made and indicated this state. All previous selections are usually cancelled. Such selection systems have beedn used not only for TV touch tuning but also in FM stereo tuners and AC power control although the major commerical application by far is the TV market especially where European consumers are requiring more than 12 programme sets. The reliability hazard of a multiple interlinked mechanical system becomes acceptable. A single chip solid state solution is very attractive. Such a system will require each TV channel to have

- 1. A touch sense input.
- 2. An output for varactor tuning.
- 3. A channel indicator.

Other facilities required may be stepping mode for a remote control option, the ability of system expansion by cascading units, a muting facility for the sound channel and disabling the AFC during the selection change, a preset state of switch on and possibly a band switching function.

The ML230 Series

Plessey Semiconductors have developed a series of low threshold P—MOS touch control devices to cater for the majority or requirements. MOS integrated circuits are ideally suited to the high impedance input requirements of touch sensing circuits. A higher order of integration is achievable with MOS technology so that all requirements may be realised with a single device. A high noise immunity and a very economic supply current make these devices ideally suited to TV touch tuning.

The basic touch sensing, laching and output configuration is shown in Fig. 1. Apositive sense input normally has a voltage which is more negative than 0.6(V DD-V SS) on one of the channel touch sensing inputs. A simplified representation of the circuit is shown in Figs. 2 and 3. A voltage comparator with a threshold voltage of 0.5(V DD-V SS) is used to set the channel bistable memory and reset all other channels. One output transistor then enables the varicap output line for tuning while the other holds the input at V SS and possible drives an indicator. The varactor supply and output are separated from the main device sensing circuit and slection logic supply in all ML230 series devices, so that nothing need interfere with the tuning voltage regulation. The 'ON' resistance of the varicap outputs in guaranteed to be less than 1000hms at 10mA for devices in the series.

Table 1	I shows a range of Plessey	Touch Selection	devices and lists some	of the different facilities they of	fer.
---------	----------------------------	------------------------	------------------------	-------------------------------------	------

	ML231B	ML232B	ML236B	ML237B	ML238B	ML239B
Number of pins or package	16	16	24	18	24	24
Number of channels	6	6	6	6	8	8
Neons ⁽²⁾	Yes	Yes	Yes	Yes ⁽¹⁾	Yes	Yes ⁽¹⁾
LEDs ⁽⁴⁾	Yes	Yes	Yes	Yes ⁽³⁾	Yes	Yes ⁽³⁾
Sensitivity, R _F (100M, Mains)	Yes	Yes	Yes	Yes	Yes	Yes
(50M, High DC)	Yes	Yes	Yes	Yes	Yes	Yes
(20M, V _{SS} DC)	Yes	Yes	Yes	Yes	Yes	Yes
Channel Selection, + ve	Yes	Yes	Yes	-	Yes	-
– ve (GND)	_	-	-	Yes	-	Yes
Stepping Facility	-	Yes	Yes	Yes	Yes	Yes
Mute O/P	-		Yes	Yes	Yes	Yes
Clear I/P	_	-	Yes	-	Yes	Yes
Cascadable		-	Yes	-	-	-
Channel Selected, Power Up	3	Any ⁽⁶⁾	Any ⁽⁶⁾	1	1	1
Band Selection ⁽¹⁾	Yes	Yes	Yes	Yes	Yes	Yes
NOTES						

1. Neons with a \pm 10% tolerance on striking voltage.

2. Neons with a \pm 20% tolerance on striking voltage.

3. LED's used at a current below 5mA.

4. LED's used at a current below 10mA.

5. With Neons or LED's at reduced sensitivity.

6. Some external components are required.

TABLE 1. ML230 Series

Design considerations

The ML230 series of integrated ciruits can be easily designed into many applications and internal protection is included, but resonable care should be taken as with any other MOS device particularly before and during connecting the device to the external circuit. The independant V_S varicap supply should not exceed V_{SS} and for optimum drive should not be less than V_{SS} -0.7V. All devices are tested at 30V and 36V and some applications exist where successful performance has been achieved with V_{SS}-V_{DD}=16V.

Touch Sensing

The requirement of the touch sensing inputs is to sense safely a finger resistance which could be over 20Mohms. BS415 suggests a comfort limit of 0.3mA peak and specifies a safety limit of 0.7mA peak current flowing between any accessible conductor (in this case the touch plates) and any other externally fed conductor (in this case 240V 50Hz). Thus a minimum resistance, R1, can be calculated:-

$$RI = \frac{240 \times \sqrt{2}}{0.7}$$
 k ohms
= 485 kohms

Also the maximum leakage of the ML230 series inputs is specified as 1μ A, the input leakage resistor, R1, in Figs.4(a) and 4(b) has to pass this leakage current without allowing the input of the device to approach too closely to the sensing threshold.

Minimum input threshold voltage = 0.4 (V DD-V SS). Choose a safe limit of input voltage, e.g. V DD+10V.

$$R1 = \frac{10V}{1\mu} = 10Mohm$$

Fig.4(a) shows how a touch sensing circuit may be arranged to operate using the 33V or so of the device supply. R2 and R3 are both safety components needed in the case of unisolated, usual, television chassis arrangement. A lower finger resistance will be needed to be sensed by such a low voltage circuit. Let this maximum worst case finger resistance be Rf. Then for sensing at the highest threshold:-

$$\frac{\text{Rf} + \text{R2} + \text{R3}}{10} = \frac{0.4}{0.6}$$

Therefore Rf = 5.5M

This sensitivity is adequate if good touch contacts are used but he arrangement shown in Fig.4(b) will provide better sensitivity. In this case

Rf +16.8 =
$$240\sqrt{2}$$

Thus Rf = 150Mohms

It will be noted from Table 1 that two devices. ML237 and ML239 are available for touch selection by a negative potential. These circuits overcome any difficulties experienced in selection when the user is statically charged due to a dry atmosphere and carpeting of a synthetic fibre material. Problems in selection associated with a low impedance ground path such as when the user is in contact with a metal radiator can be solved by ensuring that devices have their inputs conditioned towards ground when they are being selected.

Channel Indication Using Neons

Miniature wire ended neons can easily be used as channel indicators. The ML230 series incorporates low impedance current driving elements operating on the channel selection inputs. This means that the outputs to the tuning voltage presets need be used for any other function. This isolation gives better tuning stability. Fig.5(a) shows how easily a neon such as Hivac 3L type can be incorporated into a mains voltage touch sensing arrangement similar to that shown in Fig.4(b). The direction of the diode will be reversed for negative touch sensing circuits ML237 and ML239. Neon indicators are cheap and only demand a current of 0.3mA to 1mA to fully illuminate a miniature wire ended type. They do however, require a high voltage supply in order to strike satisfactorily. To add a neon indicator to the touch circuit shown in Fig.4(a) a supply of 150V and a series resistor 0.7mA. When using neons with lower voltage touch sensing circuits care should be taken that the neon striking does not degrade the touch sensitivity. A neon 'hold off' transistor may be required, particularly with the ML237 and ML239 negative sensing circuits when low voltage touch sensing is used. Such a circuit is shown in Fig.6. Immediately the input voltage falls below the threshold due to a finger resistance across the touch contacts, a mute pulse is generated which turns on the BC546 transistor. With this transistor on, the voltage across the neons is reduced to 33V and all neons are extinguished. After the mute pulse the BC546 transistor turns off and allows the new channel indicator to strike across the full 103V supply. The transistor switch thus ensures that all previous indicators are cleared and no leakage paths exist to interfere with the new selection.

LED Channel Indicators

LEDs can easily be used as channel indicators provided that the maximum drive current is not exceeded. As can be seen from the data sheets the 'ON' resistance of all ML230 series varicap outputs is less than 1000hms at a current of 10mA. The input 'ON' resistance is a maximum or 2500hms at a current of 10mA except when using the ML237 and ML239 when the maximum current is 2mA. Thus LED's can be driven at 10 or 12mA from the outputs or a current of 4 or 8mA may be used from the input pins in the case of the ML231, ML232, ML236 and ML238.

Fig. 7 shows a low voltage sensing circuit with LED indicators. The LED current is defined by the 1.2K and 820ohm resistor as about 10mA. An offset voltage is fed from 920ohm resistor via the 10M leakage resistor to the input. This offset voltages of 11.8V in the case of Fig. 7 increases the touch sensitivity to 20Mohms. The diodes supplement the reverse characteristics of the LED's. The 1k resistor sets a voltage of 0.6 V SS on this diode, to reverse bias it when no channel is selected. This is important at turn or when the ML236 is cascaded, because LED leakage could cause spurious selection.

The difficulty in using the ML237 or ML239 inputs to drive higher current indicators is due to the fact that the MOS transistors used as source followers given an appreciable voltage drop. This could lead to the channel selection threshold being exceeded and so channel selection would not be stable. Fig. 8 shows an example of such an input characteristic. More current than the guaranteed 2mA may be sunk by the input, but as the voltage increases towards the threshold, stable selection becomes more difficult to maintain. The load lines shown given an indication of the series resistance required, but is should be remembered that Fig. 8 is only an example and not typical of all devices. Also, the threshold voltage specification is 0.4 to 0.6(V SS-V DD).

Varicap voltage switches

All ML230 series devices are guaranteed to have an output resistance of less than 1000hm for their varicap output switches. This means that excellent regulation can be maintained for the varicap output voltage. As mentioned previously the varicap supply, V SS, is brought out to a different pin Fig. 9 shows the simplest arrangement that allows different tuning voltages to be present using the 100K variable potentiometers. Only one MOS switch is shown and only 3 channels, but 6, 8 or more channels can be accommodated. However many channels are used only one MOS switch wil be 'ON' at any time. The diodes allow the potentiometer settings to be independent of each other. One idea for temperature compensation is shown, but a number of systems can be used to compensate for not only the varicap drift and the varicap supply stability but also the 0.5V/ o C or so change in voltage across the MOS switch and the 2.3V/ o C of the diodes. Forward biased diodes, zener diodes and thermistors may all be utilised for best temperature stability.

A universal application

Appendix 1 contains a printed wiring layout, circuit configuration and component details for a positive or negative touch selection application using LED's or neons respectively. Most of the component details have been covered previously and either circuit can be easily adapted for other slightly different requirements.

Included in the ML236 data sheet is an application circuit for a 12 channel touch selector using 2 devices. Fig.10 clearly illustrates how any number of ML236 devices may be cascaded, diodes will be needed if more than 2 devices are cascaded.

Fig.11 incorporates an AFC defeat function when momentary action push switches are used. Very few components are needed for this configuration which offers all the main facilities.

The circuit in Fig.12 only requires a single supply for neon, chip and varicaps. A shunt regulator controlled from the varicap zener feeds the chip and the varicap tuning voltage out is temperature compensated.

ML238 application circuit

It will be seen from Appendix 1 that the ML238 circuit uses a low voltage (33V) touch selection supply with improved sensitivity circuitry. The mute time constant capacitor of 22nF gives a mute time of about 18ms at a V $_{SS}$ of 33V. When a stepping input applied the mute time is increased by the width of the stepping pulse. Some temperature compensation is afforded by the diode connecting the lower end of the preset potentiometers to chassis. An added facility not previously mentioned is the band selection circuitry for

multi-tuner arrangements. The set of 3 way switches allow band I III IV/V to be selected automatically for any channel via the 3 emitter followers.

ML239 application

Appendix 1 gain shows a low voltage touch selection supply for this device. A new selection is made when an input becomes more negative (towards chassis) and falls below the input threshold. Thus this device in this application will not only switch when the user has a high (negative) static charge, but will also switch satisfactorily when the user is at ground potential (due to contact with a central heating radiator say).

A 150V DC supply is used for the high intensity neons because such neons have a high striking voltage. A high voltage transistor, turned on by the mute output is ued to turn off all indicators during a channel change. This transistor has to withstand the full neon striking voltage and also survive if no neon is on, during start up for instance. The BC447 transistor used has an 80V BV_{CBO} and BV_{CEO}. Also it is used with an 18k base-emitter resistor. The touch sensitivity is not quite as good as the previous application and so the touch plate resistors are kept low at 560k, the minimum allowable by the safety limit.

Appendix 1

6. REMOTE CONTROL USING PPM

.

Introduction

Plessey Semiconductors have developed and produced two integrated circuits that when combined give on e of the most flexible remote control systems on the market. The SL490 is a pulse-transmitting remote controller, for use in conjunction with the ML920 receiver.

Methods of control can be achieved by cable, sound, ultrasonic, visible light, infra-red or radio frequency.

On a television set, it is possible to control the Brightness, Volume and Color in 32 steps from minimum to maximum. In addition, facilities for Sound Mute, Color Kill and Normalise, as well as a number of other options which will be fully described later, are incorporated within the system. The system can be used with Television having 8,10,12,16 or 20 programme selections. If more than 20 selections are needed, the system is easily expanded.

Commands are transmitted by codes via a pulse position modulated signal. The SL490 can give a modulated carrier frequency from the on-chip oscillator. This on-chip oscillator, used for carrier generation, is selectable so that pulses with or without a carrier frequency may be transmitted.

The Pulse Width/Modulation Rate is variable, and PPM results in:-

(i) An economy of Channel Width

(ii) A greater number of Commands Binary Codes, transmitted in a Pulse Position Modulated Signal help in ensuring that incorrect signals do not operate the receiver. 5 bits of information contained within 6 pulses are transmitted and when detected by the receiver are checked. Pulses must be of the correct pulse width, in the correct position, the gap between words must be as designated, and finally, two identical words must be received before the receiver is allowed to action the sinal. Consequently this system is virtually immune to incorrect signals.

As current is conducted only when a contact is made by a key switch, negligable power is consumed from the battery in the transmitter, thus ensuring that battery life is nearly as long as shelf life.

A whole series of domestic appliances may be controlled by just one transmitter. For example, since the remote control system can be used for Television, Radio/Tuner, Tape/Recorder Decks. Garage Doors etc., then with just one transmitter the following can be controlled remotely:-

- (i) the garage doors may be opened.
- (ii) a porch light may be switched on
- (iii) a radio, tape recorder or television may be switched on and the desired programme selected.
- (iv) cooker hotplates or oven setting may be adjusted.

Fig. 1. Plessey Remote Control System Block Diagram

Other Possibilities

(1) An automatic telephone answering machine can itself be commanded to relay all its messages over the telephone, instead of having to manually play-back the telephone messages.

(2) The Remote Control of Toys and Models.

(3) Industrial Control e.g. may be used to trigger, interrogate, and transmit back information from a substation to the Main station, so that data can be analysed and appropriate actions carried out.

In general, all systems that have in the past relied on some method of manual triggering such that infromation, data etc. can be recorded and perhaps appropriately actioned, can noe be remotely triggered and remotely actioned.

The Transmitter Unit

The SL490 though initially designed with TV remote control in mind may be used whenever a compact pulse coded digital transmission system can be realised. A basic 5-bit code is used giving 32 code words which can be modulated as pulse position modulation (ppm) onto a single carrier frequency or transmitted as baseband pulse position modulation. Fig. 1 shows how an ultrasonic or infra-red link may be used to control 3 analogue settings, select up to 20 channels and give 6 other control functions by using an SL490 ppm transmitter and a ML920 ppm receiver. The SL490 could equally well be used to drive a cable link or a radio link.

Only single pole switches are needed in the key matrix and fairly high 'on' switch resistance may be tolerated. The transmitter has a very low standby current (leakage only), and a transmission is economical on power due to the design and low duty cycle of pulses fed to the load. An ultrasonic transducer may be fed directly using only 2 resistors and 3 capacitors external to the device. Thus, small battery, ahnd held, portable operation is easily implemented and low cost ultrasonic transducers may be used at their natural resonant frequency.

For infra-red operation, a 2 or 3 transistor amplifier is used to feed very narrow high current pulses to a gallium arsenide, infra-red emitting diodes, such as the Plessey GAL32. If a higher output is required, 3 or 4 GAL32 diodes can be used in parallel. The pulse nature of the signal allows the diode emitter to work at a higher light output efficiency and the battery current to be reduced. Figs.2,3 and 4 show the output voltages waveforms obtainable. Fig.2 shows a lower than normal carrier frequency compared to the pulse width. This is done for clarity although the device would operate satisfactory with such timing.

Fig. 2. PPM Output showing ultrasonic carrier frequency

Fig. 3. Ultrasonic transmitter output (For A '1' period of 18mS)

Fig. 4. PPM output (Pin 2) with no carrier

The Receiver Amplifier

At the receiving end of the link, the system will require some sort of gain and bandwidth defining stages, before the detected signal is fed to the ML920 receiver. Usually 2 or at the most 3 amplifier stages are sufficient with some fairly simple active filtering, and in the case of the infra-red link, an infra-red filter, required before the photo transistor. After filtering and amplifying the ultrasonic frequency, a simple diode detector may be used. The detected PPM can then be fed to the ML920 via a buffer amplifier stage. Fig.5 shows how an ultrasonic frequency of 33KHZ to 43KHZ may be chosen to avoid the second and third harmonic of the TV line output stage.

An inexpensive transducer may be chosen with its natural resonant frequency within this band, and driven at its natural resonance which simplifies loading and improves power output. The actual bandwidth needed about the carrier is approximately 10KHZ. The data rate may be chosen by considering the rate at which the analogue outputs of the ML920 are required to step. If for example we require an analogue output to sweep its full range (32 steps) in about 10 seconds, this requires one step every 300msec or so, but because of the receiver error checking code comparator, the transmitter word rate should be set to 150msec.

Referring to Fig.3, it will be seen that the code word period including the inter-word space is 162msec which will give the required analogue change rate, full range in about 10 seconds. The only adjustment needed in the receiver is to set the oscillator time constant, so that 20 time periods on the receiver monitor, (pin 9), corresponds to a '0' interval of the incoming PPM (see Fig.6). The demodulator timing oscillator frequency tolerances of up to 10% in both the transmitter and the receiver. This can be seen from the timing window durations of Fig.6.

Fig. 5. Ultrasonic transducer reponse with line frequency and its harmonics

Fig. 6. PPM Demodulator timing

An infra-red link

For short range remote control, infra-red links have advantages over ultrasonic links-less multipath interference, lower spurious radiation, less annoyance to humans and animals, a higher modulation rate capability and more robust transducers. High efficiency infra-red light emitting diodes (LED) are relatively inexpensive and can incorporate both reflector and lens for a more concentrated beam light. Multichip assemnlies are also becoming more common and these can take fairly high currents. LED's become more efficient at higher currents, and pulse an d multiplex systems are common for display systems. Thus a PPM system can be made to operate a LED at quite high outputs for small increase in battery current. More than one LED may be connected in series at lower currents and in parallel at higher currents, and these emitters can have different orientation of their axes if required.

On the receiver side, a photo diode or photo transistor can be used with an appropriate infra-red filter. Fig.7 shows how a photo detector response, although peaking in the near infra-red region, has good detection properties at visible light wavelengths and into the ultra-violet. As the energy emitted from a gallium arsenide LED is in the main a narrow band emission at 940nm, a correctly chosen filter will attenuate greatly most of the interferring noise signals. Other noise sources which have large emissions in the infra-red e.g. a tungsten filament lamp, can be rejected by carrier modulation of the infra-red link.

Both amplitude modulation and frequency modulation have been used, but neither have simplicity nor all the advantages that a pulse system can offer in LED driving efficiency and economy of detection. Pulse Position Modulation using a narrow pulsed high current drive to a gallium arsenide LED, enables a very good signal to noise ratio to obtained at the demodulation. Only photo-detector saturation (in very bright sunlight for example) or the very close proximity of a high output fluorescent gas discharge tube could cause the reception to be interrupted.

SL490 - remote control receiver

General description

The SL490 ia an 18 pin, bipolar, remote control pulse transmitting monolithic circuit for use with the ML920 Receiver Single pole switches arranged in a 4 x 8 matrix or 12 keys (1 out of 4 and 1 out of 8) are encoded by the device which then gives a modulated carrier frequency from an on-chip oscillator. A standby current of only 6uA or so is taken from a 9V supply by the device until any switch closure is detected. (A PP3 battery can have a battery life of about two years in this system). The modulated output can drive an ultrasonic transducer directly at its natural resonant frequency, enabling inexpensive crystals to be used. A 5 bit pulse position modulated signal is used giving 32 basic commands. These commands could be used in a TV remote control system to select 20 programs, control 3 analogue functions and provide 6 additional switching functions. Apart from the battery, switch, matrix and transducer, only 3 capacitors and 2 resistors are needed externally. A single RC selects carrier options and defines frequency. The other RC defines modulation rate. Output capability is direct ultrasonic transducer feed, and complimentary outputs with or without active pull ups. Continuous or pulsed visual indication can be driven directly from pin 2. Carrier oscillator may be disabled for pulsed operation of infra-red. More than one set of 32 commands may be utilised by changing modulation rate/carrier frequency.

Despite the comprehensive range of facilities offered by this remote control system, the SL490 makes the transmitter a very simple unit. Fig. 8 outlines the block diagram of the transmitter.

Fig. 7. Optical Response Characteristics

The device transmits a code word as a group of 6 pulses. Each of the five intervals between these pulses may take up 2 possible values, a short interval corresponding to a '1' OR A LONG INTERVAL CORRESPONDING 1' or a long interval corresponding

to a '0'. Fig.3 shows the timing relationship between pulses '1', '0' and 'S', the space or synchronisation gap between words. The ratio of the intervals representing '1','0' and 'S' is 2:3:6 and is fixed by the device. In addition the width of the pulse is about 1/6th of '1' interval or 1/3:2 on the above ratio scale. Thus 32 different codewords may be transmitted by the 5 bit code.

A particular codeword is selected by switching one out of eight current sources to one out of four current sinks (one of these current sinks is 0 Volts). All decoding is done by the integrated circuit, (see Fig.10). The circuit draws only about 6uA from the supply until a switch closure is detected. Power is then applied to the whole circuit. The appropriate PPM code is then generated repeatedly until the switch is released, whence, the device reverts to standby, after the codeword being transmitted is completed.

Fig. 10. Ultrasonic Transmitter Unit

ML920 - remote control receiver

General description

The ML920 is a 24 pin PMOS/LSI monolithic circuit, designed to decode the 32 possible 5 bit codes transmitted by the SL490. It functions as a remote control receiver of pulse position modulated signals. After demodulation, verification and comparison of 2 consecutive codewords, the incoming pulse position modulated signal is decoded to give 20 channels, 3 analogue controls plus 6 other control functions. It requires a supply of about 17 Volts and 12mA. Fig.9 outlines the block diagram of the Receiver.

Circuit Operation

Negative Logic: (0) := 01/1/ 1/1/1= 17/1/1/

The ML920 operates on a timescale fixed by the on-chip oscillator and an external R and C time constant that defines its frequency. A counter is reset whenever an input pulse is received (see Fig.6). The counter defines timing windows for the following pulse. After a pulse is received the input is disabled until a count of 10. This is to prohibit any possibilities of pulse echoes of multipath reflections upsetting the correct transmission. If a pulse is received after a count of 10 has been attained, it will be accepted as a '1', a 'O' or an 'S' ('S' is the synchronisation interval or interword space). If a space is received, then a check is made to ensure that 6 pulses have previously been received. If no pulse has been received when the counter reaches 60, then a general reset takes place, and the start of a new codeword is awaited. Only when two successive codewords have been correctly received and a comparison check to prove that the two codewords are identical, is the infromation passed to the decoder to be acted upon.

The ML920 has 3 Digital-Analogue converters on its chip. Its outputs are in the form of current sinks which have 32 current levels from O to about 1mA. In Television, this eliminates some interface circuitry and allows this device to control circuits such as the TBA120S and the TBA560. Hence, direct controls of the Volume, Brightness and Color of the set is possible. An Up/Down counter is incorporated into the 5 bit data highway and this allows channel, volume, brightness or color words to be read, incremented and re-written into their respective stores. If 'color' is zero then 'color kill' is automatically generated. The circuit also has sound mute which turns the sound down to zero instantly, thus avoiding the ramping down of the sound through a 32 step volume control, as it has a slow rate of change to allow fine control. When the mute button is pressed a second time, the television reverts to its original volume. The ON/STANDBY output switches the TV on from the standby condition or vice-versa.

ML920 Pin Functions

Negative Logic.	$0 1300 (v_{ss}) + 13 = 170 (v_{DD})$	
Pin	Name	Function
3	VDD	—17V power supply
4	VSS	OV power supply
5	ON/STANDBY I/P	A '1' on this pin will toggle pin 11 (ON O/P), generate RECALL and AFC VOLUME, BRIGHTNESS and COLOR, reset MUTE and set channel code 00000.
6	NORMALISE I/P	A '1' will normalise the VOLUME, BRIGHTNESS and COLOR outputs A RECALL signal is generated and MUTE is reset.
7	PROGRAM STEP	The program code will step up by 1 as long as this pin is held at logic '1'. The time period between steps is defined by an RC constant attached to pin 15. On reaching 20 the next step returns to 1. On output is set to ON, and AFC is generated. If the TV goes from Standby to ON, RECALL is generated and VOLUME, BRIGHTNESS and COLOR are normalised. If VOLUME is 0, MUTE is reset.
8	OSC. TIME CONSTANT	An RC time constant is formed for the clock timing be connecting external components one resistor and one capacitor, to this pin. Adjusted so that period of outputs on pin 9 is 1/20 of '0' interval of incoming ppm. by
9	OSCILLATOR MONITOR	This output is a division of two of the oscillator, and is available for testing and setting purpose

10	PPM I/P	The output of the front end amplifier is connected here such that the signal is in the form of positive pulses seperated by time periods whose length define the data. With no signal PPM input is at a logic 1.
11	ON O/P	Open drain output. Logic 1 denotes TV set ON: Logic '0' TV set standby. Set to 1 when program number changes Set to 0 power clear or by Transmitter selected 'Standby'. Toggle to opposite state by manual ON/STANDBY control
12	RECALL O/P	Open drain output A '1' may be used to trigger an on-screen display. A static output is generated by the manual controls ON/STANDBY and NORMAL. A pulse is generated by any channel change if the circuit switches to 'ON' at the time, and by RECALL and NORMALISE commands from the transmitter.
13	AFC O/P	Open drain output. Logic 1 can inhibit the tuner AFC A static output is generated by manual ON/STANDBY control. A pulse is generated by any program number change.
14	POWER CLEAR	A capacitor and resistor connected here define the time delay for the power clear circuit which normalises all D—A outputs etc.
15	PROGRAM STEP TIME CONSTANT	An R—C time constant defines the time period between increments of the channel when stepping.
16—20	PROGRAM	5 Outputs encode 20 program numbers in binary code E D C B A Program 1 is 0 0 0 0 0 Program 20 is 1 0 0 1 1
		E is first and A is last in the PPM pulse train. Program 1 is set when ON goes to a '1'.
21,23,1	VOLUME BRIGHTNESS COLOR	These three outputs are from three 5 bit current mirror D/A converters. They are referenced to the current drawn from pin 24, Iref, and give 32 steps, Iref/8 per step, from 0 to 31/8 Iref. The outputs will be set to 12/8 Iref by the NORMALISE I/P the mormalise code from the transmitter or when the ON output goes to a '1'.
22	MUTE O/P	This will change state (toggle) on reception of a mute command but if VOLUME O/P is zero MUTE O/P is held at '0'.
24	D/A REFERENCE	A current drain Iref, set by a single external resistor will fix the nominal step of the D/A outputs to Iref/8.
2	COLOR KILL	This O/P gives a logic '0' when the COLOR D/A output is zero.

Applications

Ultrasonic Transmitter

As previously mentioned the SL490 PPM transmitter and ML920 PPM receiver can be used whenever a binary digital channel exists to control both digital and analogue functions. Fig.10 shows how an additional NPN transistor (BC547) may be used to drive a visible light LED is required. Two PNP transistors (BC557) may also be added as shown as active 'pull ups' to increase the power fed to the ultrasonic transducer at the expense of a slight increase in battery current consumption. Without these, the output current is limited to about 5mA by internal pull up resistors, but even with the transducer directly powered from pins 2 and 3, adequate load power is obtained by the 18V effective output swing.

The modulation rate of the PPM signal is set by the CR network on pin 16. With the 220nF capacitor shown, a variable resistor set at 50Kohms should give a PPM speed such that the word rate is 150mS, but almost any

desired rate can be selected if required. The CR network on pin 18 similarly sets the desired carrier frequency. In this particular application the 1.5nF capacitor and the 22Kohms resistor are used to set the carrier frequency to the natural resonance of the transducer, about 38KHZ. By choosing a suitable capacitor and trimming resistor, a wide range of carrier frequencies (0 to 200KHZ) are possible.

Ultrasonic Receiver

Before the received Ultrasonic signal can be detected and fed to the ML920 PPM demodulator, it must be amplified. Some frequency selectivity is also desirable and this can be achieved by an operational amplifier, active filter stage. Fig.11 shows how an SL748 can be used as the first amplifier stage. Some lower output transducers may require an additional single transistor amplifier stage before this. The amplified signal is detected by the NPN transistor (BC547) and after smoothing, is fed to the interface amplifier. The input of this amplifier is biased so that a threshold is set up just above the noise level. The output is thus reasonably noise free and sufficient amplitude to drive the ML920 directly into pin 10. This receiver together with the transmitter has been used to give a working range of 6m without active pull ups and 8m with active pull ups although this does depend on transducer efficiency. The word rate used is about 6 per second giving a command rate of 1 receiver command every 300mS. The circuit and component layout is shown in Fig.14 and Fig.15.

Infra-red Transmitter

For infra-red transmitter unit, the SL490 is easily made to give out a carrier frequency, or converted so that the output will consist of narrow DC pulses. If no carrier frequency is needed for the PPM output then no capacitor is needed on pin 18 and resistor value should be reduced to 2.2Kohms. A narrow current pulse is derived from pin 3 shown in Fig.12 and this is used to drive the LED array by a PNP-NPN configuration, (in this instance the NPN transistor is a Darlington pair). The arrangement gives up to 10Amps. current pulses and can be used as extreme ranges with a sensitive receiver.

Battery consumption is only increased by 50% because of the low duty cycle load current pulse: pulse width may be reduced to less than 15uS, but phototransistor response may be decreased for narrower infra-red pulses. Usually sufficient power output will be available when a simple NPN output configuration with 1 to 3 LED's connected in series. Parallel connection is only needed at higher currents when adequate current sharing takes place between LED's of the same type. The current pulse is drawn from 470uF capacitor which should not have excessive inductance or long connections to the load. In addition if a visible light is needed to indicate that the transmitter is operating, a red LED may be connected directly to pin 2, the other output pin. (unused in this application). This is also shown in Fig.12.

Fig. 11. Ultrasonic Receive Amplifier

Infr-Red Receiver

The photodetector should have a filter with adequate cutoff towards the visible light region. A Kodak type 87C is suitable and allows a high gain, operational amplifier, active filter stage to give very good sensitivity (Fig.13 shows such a configuration). The circuit should be well screened from electrical noise. Indeed the screen can be extended over the photodetector lens as an open mesh. The BPW34 photodiode gives a good response to weak signals down to a 10uS pulse width. The SL748 in Fig.13 filters the detected infra-red signal and amplifies the pulse, feeding it to a CMOS 2 input and gate. The first gate is biased in class A and the other 2 form a monostable. Some sensitivity control and monostable threshold variation are achieved by a simple 1M ohm potentiometer. This gives a very clean pulse at the output which is transistor buffered and fed to the ML920 PPM receiver. The ultimate range of the transmitter receiver was found to be 27 m. More usual ranges may be dealt with by using only a single output NPN transistor and transmitter LED, where the range was found to be about 8 m. The word time used was 75ms, twice the speed of the ultrasonic link. The layout and component positions can be seen in Fig.16 and Fig.17.

Fig. 12. Infra-Red Transmitter

Fig. 13. Infra-Red Receiver for PPM

The ML920 Receiver

Very little is needed externally to this device, there being a high degree of integration on the chip. Pull up load resistors of about 50K ohms are required, however, on all digital outputs except the oscillator monitor. Fig.18 shows this and the other basic requirements. The whole receiver timing is set by a single RC time constant on pin 8. Final adjustment is achieved by monitoring pin 9 which gives a buffered, divide by 2 of the main oscillator. The correct setting will be when 20 complete cycles on pin 9 occur for a '0' interval in the received PPM signal. Two other time constants may be needed: a power start up RC on pin 14 which clears and intialises the chip when its supply is switched on and a second time constant on pin 15 may be needed if the program step is used. This defines the stepping rate.

The analogue outputs will need a current mirror reference on pin 24 (about 0.35mA) and 5 bit D/A converter outputs themselves will each need a current sink for the 0 to 1.4mA or so to which they may be set.

For maximum linearity these current sinks should not allow their voltage to exceed 5V or so (3.9K ohms maximum), but this may be increased to 10V if 10% linearity can be tolerated. The 3 manually controlled local inputs are shown in Fig.18 as simple switched resistor pull ups. Some debounce may be needed in extreme cases.

Fig. 14. Ultrasonic Transmitter P.C.B. and Component Layout

Fig. 15. Ultrasonic Receiver Amplifier P.C.B. and Component Layout

Additional Facilities

Up to 20 channels may be set, selected individually and stepped sequentially. If less than 20 channels are needed then 6,8,10,12 and 16 are readily catered for. 10 channels may be utilised with no modifications, instead of the latched output E,D,C,B,A, being decoded, the least significant bit, A, is ignored. When stepping, a double channel step is needed to get to the next used channel. If stepping is not required any number of channels may, of course, be used. Fig.19 allows fast 'end' around stepping of unused channels in a 16 or 8 channel system. When an unused program number is detected the step input is held low and the step time constant is switched to 'very fast'. A similar circuit may be used to cater for complete stepping facilities with 12 or 6 channels.

As previously mentioned the analogue outputs are current sources giving 32 steps of current in the range 0 to 1.4mA. This may be controlled by the current mirror reference on pin 24. Greatest linearity is obtained if the current sink resistor on the D/A outputs do not exceed 3.9K ohms giving a 0 to 5V control range. However, a 0 to 10V range may be obtained with higher resistor values if some reduction in linearity can be tolerated. The simplest form of local asjustment of analogue control levels is to make the current sink resistor variable, but if more sophistication is required then Fig.20 shows how an operational amplifier may be used. This circuit enables both the range and the DC value of the control voltage at the output of the operational amplifier to be set and operated by either the remote control or the local control.

If local push-switch control of the analogue functions is desired, then Fig.21 shows how an additional SL490 with few external components may be used. The output of this SL490 is 'teed' into the receiver PPM line at the base of the buffer transistor. On/Standby, Normalise, Step, Mute and Recall are all now available as local controls from push-switches which require no debounce via the local control transmitter.

One transmitter can be used to control more than one receiver. Fig.22 shows how a simple slider switch can change the modulation rate of the PPM to control another 32 command set receiver. As long as the command rates differ by more than 30%, no cross coupling should be experienced because of the high integrity of the receiver PPM demodulator timing. Fig.22 also suggests how an MOS transistor 'memory' and 2 push switches may replace the 2 position switch.

In some cases a fourth analogue control output may be required from the receiver and it can be seen in Fig.23 how this might be achieved with the addition of some logic elements and a D/A ladder network. 16 channel selections are available, freeing 4 commands for other uses. Because of commands becoming 'mixed' it is recommended that the step facility is not used in configurations where additional commands have been incorporated. This simplifies decoding circuitry greatly.

Fig. 16. Infra-red Transmitter P.C.B and Component Layout

Fig. 17. Infra-red Receiver Amplifier P.C.B. and Component Layout

Fig. 18. PPM Receiver Layout

TRANSMITTER CODE	FUNCTION	TRANSMITTER CODE	FUNCTION
EDCBA		EDCBA	
0 0 0 0 0	Program 1	0 0 0 0 0	Program 0
0 0 0 0 1	Program 2	0 0 0 0 1	Program 1
0 0 0 1 0	Program 3	0 0 0 1 0	Program 2
0 0 0 1 1	Program 4	0 0 0 1 1	Program 3
0 0 1 0 0	Program 5	0 0 1 0 0	Program 4
0 0 1 0 1	Program 6	0 0 1 0 1	Program 5
0 0 1 1 0	Program 7	0 0 1 1 0	Program 6
0 0 1 1 1	Program 8	0 0 1 1 1	Program 7
0 1 0 0 0	Program 9	0 1 0 0 0	Program 8
0 1 0 0 1	Program 10	0 1 0 0 1	Program 9
0 1 0 1 0	Program 11	10100	Color +
0 1 0 1 1	Program 12	10110	Volume +
0 1 1 0 0	Program 13	10111	Brightness +
0 1 1 0 1	Program 14	1 1 0 0 0	Standby
0 1 1 1 0	Program 15	1 1 0 0 1	Mute
0 1 1 1 1	Program 16	1 1 0 1 0	Recall
1 0 0 0 0	Program 17	1 1 0 1 1	Normalise
10001	Program 18	1 1 1 0 0	Color —
1 0 0 1 0	Program 19	1 1 1 1 0	Volume –
10011	Program 20	1 1 1 1 1	Brightness —
1 0 1 0 0	Color +	0 1 0 1 0	Page Select
10101	Programme Step +	0 1 0 1 1	Program Select
10110	Volume +	0 1 1 0 0	Page Time Select
10111	Brightness +	0 1 1 0 0	Page Display
1 1 0 0 0	Standby	0 1 1 0 1	Picture Display
1 1 0 0 1	Mute	1 0 0 0 0	Reset Newsflash
1 1 0 1 0	Recall	1 0 0 0 1	Inhibit Newsflash
1 1 0 1 1	Normalise	10010	Reveal Text
1 1 1 0 0	Color —	10011	Freeze Page
1 1 1 0 1	Programme Step —		
1 1 1 1 0	Volume —		
1 1 1 1 1	Brightness —		

TABLE 1. BASIC 32 COMMAND SET

TABLE 2. MODIFIED TELETEXT COMMAND SET

22. Transmitter modification for 2 receivers

Fig. 23. Application with fourth analogue control plus 16 programmes

Fig. 24. Receiver modification for additional commands

The basic command set of 32 can be extended ad infinitum. All that is needed are shift up and shift down keys to produce as many extra commands as desired. Fig. 24 gives an example of how 16 channels may be stored and after receipt of the code E, D, C, B, A as 1001 *(shift up) the channel selection is stored and a quad gate is enabled which gives 16 more available commands. In this application, other controls remain operative and it is only the 16 channel selection, that cannot be altered until after 1000 *(shift down) is received. A shift stepping method may thus be utilised to produce as many different sets of 16 command groups as are required. The only limiting factor is in indicating to the user which is the current command set.

An example of a particular application of an external command set is in teletext. Fig. 25 shows how a television set incorporating teletext may have its remote control keyboard laid out. The interface logic required to realise all these functions is shown in Fig. 26 and is easily realised with CMOS logic. The quad latch is used to store the programme number 0 to 9, as a BCD digit while teletext selections are being made. The negative true logic outputs, A, B, C, D, E of the channel selection highway from the ML920 may be inverted at the output of the quad latch by connection to the Q side of the output.

The monostable is triggered by the negative AFC pulse and produces a delayed and well defined stroke pulse to indicate the availability of 'good' data on the highway. The package requirement is as follows:—

Function	Number	Package	Туре	Quantity
3 input gat	es 5	4025		2
2 input gat	es 6	4001		1
		4011		1
inverters	3	spare g packag	ates in es may	above be used
quad latch	1	4042		1
monostabl	e 1	4528		1

Table 2 shows the full list of commands and how they are allocated. When reading the table in conjunction with Fig. 26 it should be remembered that negative logic convention is used at the output, A, B, C, D, E of the ML920.

Fig. 26. Teletext interface of ML920

available teletext commands may be incorporated

Remote Control of DCT

The remote control can easily be used for programming the Direct Channel Tuning, frequency synthesis system or in fact any synthesised tuner with a binary selection input. In Fig.27 it can be seen how easily a sweep mode Plessey DCT can be conditioned to coarse tune by incrementing or decrementing the channel number (equivalent to 8MHz steps in the UHF Band). In this way the tuning information for up to 16 channels can be programmed by sweeping to the desired channel. When the programme number is changed, the channel selected is allocated automatically to the old programme number. The new programme number will then call up and tune its own channel or be available for a new channel allocation if the sweep is continued. Fine tuning information may also be remotely controlled in steps of 125kHz and the last fine tuning information set will be stored for future reference.

INTEGRATED CIRCUITS FOR TV

7. TECHNICAL DATA

.

CT2010 1 GHz ÷ 380/400 PRESCALER

The CT2010 is a 380/400 two modulus divider which will operate at frequencies between 80MHz and 1GHz. The device is the prescaler used in the Plessey Key Frequency Synthesis Tuning System.

The input is terminated by a nominal 50 ohms and should be AC coupled to the signal source. The reference pin should be AC decoupled. The decoupling should be effective over the full operating frequency range.

The divider contains a fixed divide by 20 followed by a divide by 19/20. The divide by 19/20 divides by 20 when no control pulses are applied to the control input. The divide by 19/20 will divide by 19 once for every positive going edge applied to the control pin. The control input edge is latched and synchronised so that the following output cycle, commencing with a negative edge, is produced by 380 input cycles to the whole divider stage, rather than 400. This means that the device is highly tolerant of delay in the control rol divider stortion of the control waveform.

To ensure that there is an output cycle produced by 380 input cycles for every control pulse, the rate of control pulses should not exceed half the output frequency. (See timing diagrams.)

The output source impedance is nominally 100ohms. The output swing is nominally 300mV and swings down from the positive supply.

ABSOLUTE MAXIMUM RATINGS

Supply voltage, V _{CC}	+7V
UHF input voltage	2.5V p-p
Storage temperature	- 55°C to + 125°C
Operating ambient temperature	– 10°C to + 65°C

Fig.1 Pin connections

FEATURES ,

- On-chip Wideband Amplifier High Input Sensitivity High Input Impedance Low Output Radiation Single ECL Output 5 V Logic Level Control Input
 - Control Independent of Distortion and Delay

Fig.2 CT2010 block diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): Test circuit: Fig.3 $V_{cc} = 5V$, $T_{amb} = 25^{\circ}C$

Characteristic	Dim		Value	11-14-	Ocertilians		
Characteristic	Pin	Min.	Тур.	Max.	Units	Conditions	
Operating voltage range	1	4.5		5.5	v		
Supply current	1		90	110	mA		
Input voltage, 80 MHz V _{IN} 300 MHz 500 MHz 700 MHz 1000 MHz	8, 6 8, 6 8, 6 8, 6 8, 6 8, 6	17.5 17.5 17.5 17.5 17.5 17.5		200 200 200 200 200	mV mV mV mV mV	rms, sine wave 50Ω rms, sine wave 50Ω rms, sine wave 50Ω rms, sine wave 50Ω rms, sine wave 50Ω	
Output voltage swing	3	240	300		mV	p-p, no load	
Output impedance	3		100		Ω		
Control input, high Iow	2 2 2	2/3∨ _{cc}		50 1/3 V _{cc}	μΑ		
pulse width	2	-10 0.2	3		μA μs		

Fig.3 Test configuration

Fig.5 Timing diagram

Fig.4 Typical application with combined input

CT2012 PLL SYNTHESISER FOR TV

The CT2012 forms the heart of the Plessey Key Fre-quency Synthesis Tuning System by taking data from the system control and data highway (the Keybus) when TUNE or FINE TUNE code is recognised and then using this data to control the frequency of the local oscillator in a television tuner with a phase locked loop (PLL).

FEATURES

High Sensitivity Divider Input

- Improved Control of Two-Modulus Divider
- Fully Keybus Controlled
- On-chip Frequency Standard and Comparator
 - Four Band Selection Outputs

ABSOLUTE MAXIMUM RATINGS

Supply voltage, V_{DD} Pin Voltage, pins 9 — 13 +7V +14V Voltage, all other pins +7V Operating temperature range - 10°C to +65°C Storage temperature range -55°C to +125°C

Fig.1 Pin connections

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

 $T_{amb} = +25^{\circ}C, V_{DD} = +5V$ Test circuit: Fig.3

Characteristic	Din	Value		Unite	Conditions	
Characteristic	FIII	Min.	Typ.	Max.	Units	Condițions
Operating voltage range	8	4.5		5.5	v	
Supply current	8		22	45	mA	Outputs unloaded
Keybus inputs, high Iow	1-5	V _{DD} - 1		0.8	V V	Leakage 10µA max.(Pin5only)
Internal pullup resistor	1-4	2	4	6	kΩ	
÷N input, peak-peak swing	21	200			mV	Sine wave via external capacitor
Internal capacitance	21			10	рF	
External frequency standard input, pin 20 not connected high low	18 18	V _{DD} - 1		0.8	. V V	100μA max. sinking 100μA max. sourcing
Quartz crystal standard	18, 20		4		MHz	20pF parallel resonance
AV Band and enable inputs	14, 15 14, 15	V _{DD} - 1		0.8	V V	Leakage 10µA max.
Band and AV outputs, unselected	9—13			13.2	V	Free drain, leakage 10μΑ max.
selected	9-13	1		5	v	1 mA sinking
÷N output, high	19			7	v	Free drain, leakage 10μA max.
low	19			0.4	V	0.3mA sinking

Fig.2 CT2012 block diagram

Apart from the CT2012 and the tuner, the PLL needs two other integrated circuits: $a \div 380/400$ PRESCALER (the CT2010) and the synthesiser tuning interface (the CT2017), which includes a charge pump, an active filter and an output stage to drive the varicap line which controls the local oscillator in the tuner.

In a typical system re-tuning of the television receiver will come from a control circuit (such as the CT2014) following some input from the viewer. This input will be new channel, fine tuning information or an instruction to access a word of non-volatile memory. In every case, the control circuit will send the required channel and fine tuning information to the CT2012.

The FINE TUNE code is used to directly transfer the FINE TUNE number from the control circuit to the synthesiser and is separate from TUNE to reduce the highway use and the time delay during manual and automatic adjustment tuning.

The CT2012 contains six main parts:

- (a) A section to recognise the TUNE code (hexadecimal 1D) or FINE TUNE code (hex. 1E) on the Keybus and then to latch all of the relevant tuning information.
- (b) A 10 bit programmable divider with an amplifier on its clock input to allow use of a small swing on the output of the PRESCALER and hence to reduce radiation.
- (c) A fine tuning system which generates the correct pulses to control the modulus of the prescaler and so give a small shift in synthesised frequency.
- (d) A crystal oscillator circuit (for 4MHz crystal) and fixed ÷ 1600 divider to give 2.5kHz comparison frequency and fine tuning timing.
- (e) A phase and frequency comparator driven by the programmable divider and the fixed divider.
- (f) Logic for band decoding and for video time-constant switching for audio visual (AV) mode logic.

The Keybus highway is used to carry both instructions and data around the Key System. To separate these two functions the codes are transmitted when the Multiplex Clock is low and the data when it is high; all zeroes or all ones are inserted to fill the gaps between adjacent code or data words to avoid spurious instructions. In order to improve the system's immunity to noise on the highway the Multiplex Clock may be stopped between operations so that noise is not clocked into any circuit, and so should have no effect, and ideally the highway and Multiplex Clock lines will be stopped in their lower impedance state to reduce noise amplitudes.

It is expected that all devices driving the highway will have Open Drain outputs, for which pull-up resistors (nominal $4k\Omega$) are included in the CT2012.

To safely detect control codes edge sensitive latches are clocked on the rising ('0' to '1') edges of the Multiplex Clock and have their inputs driven by gates looking for a TUNE code (0001 followed by 1101) or a FINE TUNE (0001 followed by 1110).

Time		St	ate		Demostra		
Time	H3	H2	H1	HO	nemarks		
C1 C2	0 1	0 1	0 0	1 1	Control code		
D1 D2 D3					Not used by Synthesiser		
D4 D5 D6 D7 D8	B1 Q7 Q3 0 P3	B0 Q6 Q2 0 P2	Q9 Q5 Q1 0 P1	Q8 Q4 Q0 P4 P0	Band (B), Frequency (Q) and Fine Frequency (P) from Key.		

Table 1 Tuning sequence on Keybus

Time		Sta	ate		Pomerko	
Time	H3	H2	H1	HO	Remarks	
C1	0	0	0	1	Control code	
C2	1	1	1	0		
D1	Qc2	Q _C 1	Q _C 0	Pc4	Correction tuning	
D2	Pc3	Pc2	Pc1	Pc0		

Table 2 Correction tuning sequence on Keybus

Signal	Pin	High (source current) V _{DD} – 0.5 V min	Low (sink current) 0.4 V max
2.5kHz Clock	6	0.5mA	2.0mA
UP DOWN 50 kHz Clock	22 23 17	0.1mA	0.8 mA
Modulus Control	16	0.1 mA	0.3mA

.Table 3 Logic output currents

Pin No.	Name	Function	
8 24	V _{DD} V _{SS}	$\left. \begin{array}{c} +5V\\ 0V \end{array} \right\}$ Power supply	
1 2 3 4	H0 H1 H2 H3	Four line highway, H0 is LSB. Inputs, 0V and 5V logic levels nominal. $4K \pm 50\%$ pull-up resistors (to V_{DD}) in device.	KEYBUS
5	MULTIPLEX CLOCK	Highway timing input, OV and 5V nominal logic levels.	
6	2.5kHz CLOCK	2.5kHz output from crystal via reference divider. May be used to give Multiplex Clock.	
17	50 kHz CLOCK	50kHz output from crystal via reference divider. Use when setting crystal trimmer.	Outputs with
22 23		Increase frequency when low Decrease frequency when high Interface IC	nominal swing
16	MODULUS CONTROL	Controls PRESCALER division ratio by pulsing high up to 38 times each comparison cycle.	
20	QUARTZ CRYSTAL	One crystal pin and the fixed capacitor.	
18	QUARTZCRYSTALTRIMMER	Second crystal pin and trimmer capacitor.	
21	÷N INPUT	Low level input clock to Programmable Divider. Should be AC coupled.	
12 9 11 10 13	BAND 1 BAND 3 BAND 4 BAND 2 AV OUTPUT	Band output selected by code 00 Band output selected by code 01 Band output selected by code 10 Band output selected by code 11 Time constant switch, pulls low only if AV band selected and AV enable is high	Open drain outputs for external pull-up to + 12V.
14	AV BAND	Input from band switch to allow AV mode to be selected.	
15	AV ENABLE	Selects shorter time constants for locking television receiver to video tape recorder or equivalent. Will be driven by diode decoder from Programme Number lines. High for AV mode, only operative when AV band is selected.	
19	÷N OUTPUT	Output of programmable divider provided for test purposes only.	

TUNING RANGE

Combining the Fine Offset range, 0 to 19 steps of 50kHz with the Programmable Divider range, 80 to 1023 steps of 1MHz, allows tuning of the local oscillator for all television broadcast channels in bands I, III, IV, V, to within 25kHz. In practice almost all television channels are

integer multiples of 50 kHz and so may be received EXACTLY (apart from any slight crystal or IF error).

The correction tuning system gives a range of -3.95 to +4.00 MHz in 50 kHz steps around the nominal frequency.

Fig.3 CT2012 test and application circuit

Fig.4 Phase comparator timing

Fig.5 Dynamic characteristics

Fig.6 Simplified timing diagrams

CT2017 SYNTHESISER TUNING INTERFACE

The CT2017 is designed for use in Frequency Synthesis Tuning Systems, in particular the Plessey Key System. The device contains a charge pump with a high impedance voltage follower, a signal detect circuit, a digital AFC circuit and a power on low detect circuit.

FEATURES

- Low Varicap Driver
- Active Filter Charge Pump
- Logic Level Control
- Signal Quality Detector
- AFC Input Option
- Auto Up, Auto Down Logic Level Tuning Correction
- Power Low Detector

Fig.1 Pin connections

Fig.2 CT2017 block diagram

The charge pump is operated by two 5V logic inputs UP (active low) and DOWN (active high). These inputs turn on a charge current and discharge current respectively. The charge pump circuit and its voltage follower operate from the +33V supply rail. The combined charge pump, external filter and voltage follower may be used as the filter and varicap driver for synthesis tuning systems.

The signal detect circuit is used in tuning systems capable of automatically sweeping the received broadcast bands. The circuit examines the line synchronisation pulse and line flyback pulse for coincidence. When a regular supply of adequate coincident line synchronisation pulses occurs, the filter voltage falls. This indicates a received signal of a sufficient strength to produce a viewable picture.

When the signal detect filter voltage is higher than the signal detectors threshold the AUTO UP and AUTO DOWN outputs are clamped at Logic '0'. When the filter detect voltage is below the level detector's threshold the AUTO UP and AUTO DOWN outputs are enabled. The enabling of AUTO UP and AUTO DOWN may be used to indicate that a signal of adequate strength has been received and the sweep may be stopped.

Using appropriate external components, pin 5 may be used as a sync pulse separator, when fed with negative video or a positive line sync pulse input.

The signal strength recognised as good depends on the signal to noise ratio at the input to pin 5. This will depend on the type of sync separation used, whether noise gating

is used and the noise figure of the signal processing circuits.

A digital AFC circuit, which comprises AFC level detector and correction tuning control, examines the AFC signal ('S' curve) produced by conventional television AFC circuits. The circuit produces an AUTO UP Logic '1' output when the AFC voltage is greater than the upper AFC threshold, and an AUTO DOWN Logic '1' output when the AFC voltage falls below the lower AFC threshold. Both outputs are Logic '0' when the AFC voltage is between the upper and lower thresholds.

CORRECTION TUNING

The AUTO UP and AUTO DOWN outputs may be used to adjust the correction tuning number of a synthesis tuning system and hence produce a digitally quantised AFC.

The power low detector circuit compares the +5V supply and the +12V supply against internal reference levels. When either supply falls below its relevant reference level the delay capacitor is discharged and the power low detector reset output is set to logic '1'. When the supplies exceed their relevant reference levels, the delay capacitor is charged to the threshold level, which turns on a transistor and the output is set to logic '0' after a delay.

The resulting output pulse may be used for setting the logic of the tuning synthesiser and for protecting the memory from corruption during power on and power off.

Fig.3 Test and application circuit

Test conditions (unless otherwise stated): T_{amb} = +25°C, V_{CC1} = +12 V, V_{CC6} = +5V, V_{CC12} = +33 V Test circuit: Fig.3

Characteristic	Characteristic Din Value		,	Unito	Conditions	
		Min.	Тур.	Max.	Units	Conditions
Operating voltage range						
V _{cc1} (+12V)	1	10.8		13.2	v	
V _{CC6} (+5V)	6	4.5		5.5	V	
V _{CC12} (+33V)	12	31		36	V	
Supply current						
V_{cc1} (+12V)	1		8	12	mA	
V_{CC6} (+5V)	6		12	20	mA	$V_5 = 0V, V_{10} = 0V, V_{11} = 5V$
$V_{CC12}(+33V)$	12	3.3	4.5	5.5	MA	$I_9 = 2 \text{ mA}, V_{10} = 0 \text{ V}, V_{11} = +5 \text{ V}$
Varicap control	_					
Output range available	1	0.9		29.5	V	$I_9 = 2 \text{ mA} (R_9 2.2 \text{ k}\Omega) V_{CC} 12 = 33.0 \text{ V}$
UP control input active				40		$v_{11} = +5v, v_{10} = 0v$
UP control input inactive	11	2		'	Ň	
UP control input current	11	Ŭ		50	μĂ	$V_{11} = +5V$
DOWN control input active	10	3			v V	
DOWN control input inactive	10	-		1	V	
DOWN control input current	10			50	μA	$V_{10} = +5V$
AFC control						
Detector high threshold	16	7.0	7.5	8.0	V	
Detector low threshold	16	4.1	4.5	4.9	V	
Detector window	16	2.8	3.0	3.2	V	
Input current	16			2.5	μA	$V_{16} = +12V$
Correction tuning outputs (AUTO UP, AUTO DOWN)	17 10				.,	
voltage nign	17, 18	4.5			v	V_{17} high = DOWN; V_{18} high = UP
Voltage low	17 18			0.5	v	Both low = inactive current sink
	,			0.0		= 2mA
Line flyback threshold						
High	4	2			v	
Low	4	_		0.7	V	
Negative video input						
Threshold	5		0.7		v	
Sync pulse switching current	5			12	μA	
Leakage current	5			0.3	μA	$V_5 = -5V$
Coincidence detector						
Enable	2	4.5			V	· · · · · · · · · · · · · · · · · · ·
Inhibit Thurse hadd	2			2	V	
Inresnoid	3		2.4		V	
Power on detector	45					0
Output voltage	15	4.5				Current source = 50μ A
Normai				0.5	v	Current SINK = 2MA
Vetector threshold				1.00		
$V_{cc1}(+12V)$ $V_{cc2}(+5V)$		9.2	9.9	10.6		See Figs.4 and 5
Polou conseitor charging ourrent		3.1	4	4.3		See Figs.4 and 5
Delay capacitor charging current	14		10		μΑ	
Delay threshold	14		9		V	

111

Fig.5 Power low detector timing diagram (Power off)

ABSOLUTE MAXIMUM RATINGS

+12V supply (V _{CC1})	+20V
+5V supply (V _{CC6})	+20V
+33V supply (V _{CC12})	+40V
Operating temperature range	– 10°C to +65°C
Storage temperature range	– 55°C to + 125°C

CT2200 5-BIT BINARY TO 13-SEGMENT DECODER/DRIVER

The CT2200 is an N-channel MOS integrated circuit, designed to directly drive two 7-segment LEDs to display the numbers 1 to 32, with leading zeros suppressed. The circuit is ideal for applications such as the programme number display of a television receiver. The display is controlled by a 5-bit binary input port, weighted so that the number shown (1-32) is one more than the binary input (0-31) to avoid programme 0. The 5 lines can come from a remote control receiver or from any other source of continuous 5-bit data.

Common anode LEDs can be driven directly with a current limiting resistor in series with each output (see Fig.5) or by using some other form of brightness control (see Fig.6). By driving each segment individually the interference problems associated with multiplexed displays are avoided.

A blanking input is provided so that the display can be turned off or can be made to flash with an external pulsed signal.

Only 13 lines are needed for two 7-segment displays because segment Tf is never lit for the numbers 1 to 32 and so does not need to be decoded and driven. Segment identification is shown in Fig.2.

The 13 outputs of the output encoder drive the gates of large output transistors to give two states: OFF and SINK CURRENT; as there can be up to 12 outputs on at once, each sinking 20mA, four 0V pins are provided to reliably carry this current. ALL FOUR PINS (3, 7, 18, 22) MUST BE CONNECTED TO 0V.

The number of segments required for each character is shown in Fig.3.

Fig.2 Segment identification

Fig.1 Pin connections

FEATURES

- Direct Segment Drive Non-Multiplexed
- 5V Supply
- Blanking Input
- Leading Zero Suppressed
- Minimum Segment Pattern per Character
- 20 mA Drive per Segment
- 5-Bit Binary Input

Fig.3 Character representation

Fig.4 Block diagram

ELECTRICAL CHARACTERISTICS (see Fig.5)

Test conditions (unless otherwise stated): T_{amb} = +25°C, V_{DD} = +5V

Characteristic	Dim		Value		Ilmito	Oradillara
Characteristic	FIII	Min.	Тур.	Max.	Units	Conditions
Operating voltage range	9	4.5	5	5.5	v	
Supply current	9			5	mA	
Input voltage high Iow	10-14 10-14	4		0.8	v v	
Leakage current	10-14			10	μA	V _{IN} = +5V
Capacitance	10-14			10	pF	
Output voltage	1, 2, 4-6, 8, 16, 17, 19-21 23, 24			1	v	Sinking 20mA
Recommended series resistor (if used)			120		Ω	

Fig.5 Test circuit and application using load resistors (see also Fig.6)

Fig.6 Minimum component application

ABSOLUTE MAXIMUM RATINGS

Supply voltage, V _{DD}	+7V
Input or output voltage	+7V
Output current	30 m A
Ambient operating temperature	– 10°C to +65°C
Storage temperature	–55°C to +125°C

CONSUMER TV CIRCUITS

ML231B MOS TOUCH TUNER

The ML231B is a six-channel sense circuit designed specifically for touch tuning in colour and monochrome television receivers. Using low threshold P-MOS technology, the circuit can be driven directly from two-terminal touch plates – replacing conventional mechanical push-buttons for channel selection. Neons may be used to indicate the selected channel, while the latched output of the ML231B drives the varicap tuner via a bias selection network.

ABSOLUTE MAXIMUM RATINGS

Ambient operating temperature	-10°C to +65°C
Storage temperature	-10°C to +85°C
Supply, Vss-Vod	36V
Varicap voltage Vsv w.r.t. Vss	+0.3V

FEATURES

- Six-channel Capability
- Direct Neon or LED Drive
- Low Impedance Drive to Varicap

An additional output is provided which goes high with no channel selected and may be used externally to select channel 3 so as to prevent the existence of a null state.

Fig. 1 Pin connections

- Uses 33V Varicap Supply
- Low Current Drain
- Reset O/P Prevents Null State

Fig. 2 Functional diagram (positive logic)

Test conditions (unless otherwise stated):

 $T_{amb} = +25$ °C, $V_{DD} = 0$, $V_{SS} = V_{SV} = 30$ V to 36V

		Value			
Characteristic	Min.	Тур.	Max.	Units	Condition
Input current			1	μΑ	$V_{in} = 0V$
Supply current	2	4	5.5	mA	
RON of varicap switch		50	100	Ω	lout = 10mA
RON indicator switch		125	250	Ω	lout = 4mA
Sense input threshold	0.4V _{SS}	0.5V _{SS}	0.6V _{SS}	v	
Reset O/P voltage high	Vss –10			V	lout = 0.5mA

Fig. 3 Typical application circuit

Reset output = $\overrightarrow{CH1} \cdot \overrightarrow{CH2} \cdot \overrightarrow{CH4} \cdot \overrightarrow{CH5} \cdot \overrightarrow{CH6}$ = 1+2+3+4+5+6+3

CONSUMER TV CIRCUITS

ML232B MOS TOUCH TUNER

The ML232B is a six-channel sense circuit designed specifically for touch tuning in colour and monochrome television receivers. Using low threshold P-MOS technology, the circuit can be driven directly from two-terminal touch plates – replacing conventional mechanical push-buttons for channel selection. Neons may be used to indicate the selected channel, while the latched output of the ML232B drives the varicap tuner via a bias selection network.

ABSOLUTE MAXIMUM RATINGS

Ambient operating temperature	-10°C to +65°C
Storage temperature	-10°C to +85°C
Supply, Vss-VDD	36V
Varicap voltage Vsv w.r.t. Vss	+0.3V

FEATURES

- Six-channel Capability
- Direct Neon or LED Drive
- Low Impedance Drive to Varicap

A stepping facility is included whereby the application of a suitable negative-going pulse to the step input pin, will cause the selected channel output to advance by one.

Fig. 1 Pin connections

- Uses 33V Varicap Supply
- Low Current Drain
- Remote Control Stepping Facility

Fig. 2 Functional diagram

Test conditions (unless otherwise stated):

 $T_{amb} = +25$ °C, $V_{DD} = 0$, $V_{SS} = V_{SV} = 30V$ to 36V

Characteristic		Value		Unite	Condition
Characteristic	Min.	Typ.	Max.		Condition
Input current			1	μΑ	$V_{in} = 0V$
Supply current	2	4	5.5	mA .	
RON of varicap switch		50	100	Ω	lout = 10mA
RON of indicator switch		125	250	Ω	lout = 4mA
Sense input threshold	0.4V _{SS}	0.5V _{SS}	0.6V ss	V	
Step pulse level	0		Vss 29	V	
Step pulse width	0.1		.1	ms	T _{amb} = 0°C to +65°C

Fig. 3 Typical application circuit

CONSUMER TV CIRCUITS

ML236B

6-CHANNEL CASCADABLE TOUCH CONTROL INTERFACE

The ML236B is a six-channel sense circuit designed specifically for touch tuning in colour and monochrome television receivers. Using low threshold P-MOS technology, the circuit can be driven directly from two-terminal touch plates – replacing conventional mechanical push-buttons for channel selection. Neons or LEDs may be used to indicate the selected channel, while the latched output of the ML236B drives the varicap tuner via a bias selection network.

A stepping facility is included whereby the application of a suitable negative-going pulse causes the selected channel to advance by one.

FEATURES

- 6-Channel Capability Cascadable
- Direct Neon or LED Drive
- Low Impedance Drive to Varicap
- Uses 33V Varicap Supply
- Remote Control Facility
- A Negative Pulse on Clear Resets All Channels

Fig. 1 Pin connections

ABSOLUTE MAXIMUM RATINGS

Ambient operating temperature	–10°C to +65°C
Storage temperature	-10°C to +85°C
Vss –Vod supply	36V
Varicap voltage Vsv	Vss +0.3V

Fig. 2 ML236B functional block diagram

Test Conditions (unless otherwise stated):

 $T_{amb} = +25$ °C, $V_{DD} = 0$, $V_{SS} = V_{SV} = 30$ V to 36V

		Value			
Characteristic	Min.	Тур.	Max.	Units	Conditions
Supply current		3	5	mA	
Input current			1	μA	$V_{IN} = 0$
Ron of varicap switch		60	125	Ω	lout = 8mA
Ron of indicator switch		125	250	Ω	lout = 4mA
Vth sense I/P threshold	0.4	0.5	0.6	Vss	
Clear, step pulse level	0		Vss 10	v	
Ts step pulse width	0.2		1	ms	
Clear pulse width	0.2			ms	
RON of mute switch		100	200	Ω	lout = 5mA
Serial and reset O/P	Vss –1			l v	'1'
			Vss 11	l v	1 '0'
Serial and reset I/P	Vss -1 5			ÍV	1 '1'
			Vss 10	V V	'Ó'

Fig. 3 Typical applications using neons as channel indicators

APPLICATION NOTES

Application using LEDs as channel indicators

In applications where the use of mains is not desired channel selection can be made by using the +30V Vss supply as a compromise but at the expense of reduced input sensitivity. In this case LEDs can be used as channel indicators.

Sensitivity may be improved at lower voltage by using a tapped LED current limiting resistor to derive a higher input voltage. (Fig. 5)

Fig. 4 12-channel application using LEDs as indicators

Fig. 5 Improved sensitivity for 33V operation

CONSUMER TV CIRCUITS

ML237B

6-CHANNEL TOUCH CONTROL INTERFACE

The ML237B is a six-channel sense circuit designed specifically for touch tuning in colour and monochrome television receivers. Using low threshold P-MOS technology, the circuit can be driven directly from two-terminal touch plates – replacing conventional mechanical push-buttons for channel selection. Neons can be used to indicate the selected channel, while the latched output of the ML237B drives the varicap tuner via a bias selection network.

A stepping facility is included whereby the application of a suitable negative-going pulse to the step input causes the selected channel output to advance by one.

FEATURES

- 6-Channel Capability
- Direct Neon Drive
- Low Impedance Drive to Varicap
- Uses 33V Varicap Supply
- Remote Control Stepping Facility
- Sound Muting During Selection
- Selected Channel 1 on Power-up
- Channels Are Selected With a Negative (or Earth) Input

Fig. 1 Pin connections

ABSOLUTE MAXIMUM RATINGS

Ambient operating temperature	
Storage temperature	-10°C to +85°C
Supply, Vss–Vdd	36V
Varicap voltage Vsv	Vss+0.3V

Fig. 2 Functional block diagram

Test Conditions (unless otherwise stated):

 T_{amb} = +25°C, V_{DD} = 0, V_{SS} = V_{SV} = 30V to 36V

Characteristic		Value		Itaita	Conditions	
Characteristic	Min, Typ. Max.	Olinta	Conditions			
Input current			1	μA	Vin = Vss	
Output leakage			1	μΑ	Vout = 0	
Mute switch O/P leakage			10	μA	Vout = 0	
Supply current		5	8	mA		
R _{ON} of varicap switch		50	100	Ω	louτ = 10mA	
Step pulse width	0.2			ms	>.05Tm	
Neon switch output current			2	mA		
Mute switch RON		100	200	Ω	loυτ = 5mA	
Input threshold	0.4	0.5	0.6	Vss		
Step input current	10		1000	μΑ	$V_{IN} = 0$	
Mute period		400	1	ms	C _M = 0.68 μF	
Step pulse level	0		Vss –29	V		

NOTES

The mute timing can be increased by using a higher value of capacitor (C_M)

Touch plate selection:

 $Tm \simeq Cm \times 0.6ms/nF$

If the channels are selecting by stepping then the mute output is extended by the clock pulse width TS

Тм

Stepping selection:

Fig. 3 Typical applications using neons as channel indicators

CONSUMER TV CIRCUITS

ML238B

8-CHANNEL TOUCH CONTROL INTERFACE

The ML238B is an eight channel sense circuit designed specifically for touch tuning in colour and monochrome television receivers. Using low threshold P-MOS technology, the circuit can be driven directly from two-terminal touch plates – replacing conventional mechanical push-buttons for channel selection. Neons or LEDs may be used to indicate the selected channel, while the latched output of the ML238B drives the varicap tuner via a bias selection network.

A stepping facility is included whereby the application of a suitable negative-going pulse to the step input causes the selected channel to advance by one.

FEATURES

- 8-Channel Capability
- Direct Neon Drive
- Direct Neon or LED Drive
- Low Impedance Drive to Varicap
- Uses 33V Varicap Supply
- Remote Control Stepping Facility
- Sound Muting During Selection
- Selects Channel 1 on Power-up
- A Negative Pulse on Clear Resets to Channel 1

Fig 1 Pin connections

ABSOLUTE MAXIMUM RATINGS

 Ambient operating temperature
 -10°C to +65°C

 Storage temperature
 -10°C to +85°C

 Supply, Vss-Vbb
 36V

 Varicap voltage Vsv
 Vss +0.3V

Fig. 2 Functional block diagram

Test conditions (unless otherwise stated):

 T_{amb} = +25°C, V_{DD} = 0, V_{SS} = V_{SV} = 30V to 36V

		Value				
Characteristic	Min Typ		Max	Units	Conditions	
Output leakage Supply current Input current Ron of varicap switch Ron of indicator switch I/P threshold Step pulse level Ts step pulse width Clear pulse level Clear pulse width Ron of mute switch Tm mute timing Step I/P current Mute O/P leakage	0.4 0 0.2 0 0.2 10	6 50 180 0.5 100 400	1 9 1 00 300 0.6 Vss -29 Vss -29 200 1000 10	μA mA μA Ω Vss V ms V ms Ω ms μA μA	$V_{out} = 0$ $V_{in} = 0V$ Iout = 10mA Iout = 10mA > .05 Tm Iout = 5mA $Cm = 0.68\mu F$ $V_{in} = 0$ Vout = 0	

NOTES:

The mute timing can be increased by using a higher value of capacitor (Cm) (See Fig. 4).

Touch plate selection :

vss _____ T_m≊C_m × 0.6ms/nF

If the channels are selecting by stepping then the mute output is extended by the clock pulse width Ts.

MUTE

The clear I/P should be left open circuit when not in use.

Fig. 3 Typical applications using neons as channel indications .

APPLICATION NOTES

Application using LEDs as channel indicators

In applications where the use of mains is not desired channel selection can be made by using the +30V Vss supply as a compromise but at the expense of reduced input sensitivity. In this case LEDs can be used as channel indicators.

The 1.2k Ω and 820 Ω resistors limit the LED current to 10mA, whilst the diode ensures less than 1 μA leakage when the LED is reverse biased. It is desirable to have a 1M Ω resistor between the touch plates and the input as a safeguard against static.

On selection of a channel, the potential divider chain comprising the 1M Ω resistor, the finger resistance and the 10M Ω resistor sets the threshold voltage on the input pin. When the channel is selected the IC provides a current source to the LED.

Fig. 4 Low voltage, improved sensitivity using LED indicators

CONSUMER TV CIRCUITS

ML239B

8 – CHANNEL TOUCH CONTROL INTERFACE

The ML239B is an eight channel sense circuit designed specifically for touch tuning in colour and monochrome television receivers. Using low threshold P-MOS technology, the circuit can be driven directly from two-terminal touch plates – replacing conventional mechanical push-buttons for channel selection. Neons can be used to indicate the selected channel, while the latched output of the ML239B drives the varicap tuner via a bias selection network.

A stepping facility is included whereby the application of a suitable negative-going pulse to the step input causes the selected channel output to advance by one.

FEATURES

- 8-Channel Capability
- Direct Neon Drive
- Low Impedance Drive to Varicap
- Uses 33V Varicap Supply
- Remote Control Stepping Facility
- Sound Muting During Selection
- Selects Channel 1 on Power-up
- A Negative Pulse on Clear Resets to Channel 1
- Channels are Selected with a Negative (or Earth) Input

Fig. 1 Pin connections

ABSOLUTE MAXIMUM RATINGS

Ambient operating temperature	-10°C to	+65°C
Storage temperature	-10°C to	+85°C
Vss-Vod supply		36V
Varicap voltage Vsv	Vs	s +0.3V

Test Conditions (unless otherwise stated): $T_{amb}=\,+25^\circ\text{C},\, V_{DD}=\,0,\, V_{SS}=\,V_{SV}=\,30V \text{ to } 36V$

Characteristic		Value			0	
Characteristic	Min Typ		Max	Units	Conditions	
Step, clear pulse level	o		Vss29	v		
Input current				μA	$V_{IN} = V_{SS}$	
Output leakage			1	μA	Vout = 0	
Mute switch O/P leakage		-	10	μA	Vout = 0	
Supply current		6	9	mA		
Ron of varicap switch		50	1000	Ω	loυτ = 10mA	
Clear step pulse width	0.2			ms	>.05Tm	
Neon switch output						
current			2	mA		
Ron of mute switch		100	200	Ω	loυτ = 5mA	
Input threshold	0.4	0.5	0.6	Vss		
Step input current	10		1	mA	$V_{IN} = 0$	
Muto pariod		400		me	$C_{M} = 0.68 \mu F$	

NOTES:

The mute timing can be increased by using a higher value of capacitor (Cm)

Touch plate selection :

٧ss MUTE Voo

 $T_m \simeq C_m \times 0.6 ms/nF$

If the channels are selecting by stepping then the mute output is extended by the clock pulse width Ts.

Stepping selection :

The clear I/P should be left open circuit when not in use.

Fig. 3 Typical applications using neons as channel indications

ML920 REMOTE CONTROL RECEIVER

Plessey Semiconductors have developed and produced a range of monolithic integrated circuits which give a wide variety of remote control facilities. As well as ultrasonic or infra red transmission, cable. radio or telephone links may also be utilised. Pulse position modulation (PPM) is used with or without carrier and automatic error detection is also incorporated. Although initially designed with TV remote control in mind the devices may equally easily be applied for use in radios, tuners, tape and record decks, lamps and lighting, toys and models, industrial control and monitoring.

The ML920 demodulates the PPM signal received from the SL490 transmitter. After error checking the received code may condition a 20 programme memory or one of three D/A converters.

QUICK REFERENCE DATA

- Power supply : 16V 14mA
- Demodulation: Pulse position with time window checking by on-chip oscillator
- Decoder: 5 bit with successive codeword comparison
- Programme : Latched 5 bit binary, 20 programmes
- Analogue controls: 3 static current mirror converters, 32 step with normalise level
- Other outputs: On, Recall Display, AFC, Mute, Colour Kill, Oscillator Monitor
- Local inputs: On/Standby, Step, Normalise

Fig. 1 Pin connections

FEATURES

- Accepts 5 Bit PPM
- All Timing From On-Chip Oscillator
- Incorporates Error Protection
- Easily Used With Ultrasonic or Infrared System
- Up to 20 Programmes With Latched Binary Output
- Automatic Power-On Reset and Normalise
- Many Other Facilities, AFC, Mute, Colour Kill, Recall etc.

Fig. 2 ML920 remote control receiver block diagram

ELECTRICAL CHARACTERISTICS (see Fig. 3)

Test conditions (unless otherwise stated):

 $V_{ss} = 0V$ $V_{pp} = -16V$

$$V_{DD} = -10V$$

 $T_{amb} = 25^{\circ}C$

		Value					
Characteristics	Pin	Min.	Тур.	Max.	Units	Conditions	
Supply voltage Supply current Input logic level high low Output logic level high low Analogue output current range (pins 1, 21, 23) Analogue step size D/A reference, IREF Oscillator timing Power clear time constant Step time constant Monitor output 'high' 'low' PPM input logic level high PPM input logic level low PPM input logic level low	3 3 5, 6, 7, 2, 11-13, 16-20, 22 1, 21, 23 1, 21, 23 24 9 14 15 9 10	14 -1 V _{DD} -1 V _{DD} 0 0 -250 -1 V _{DD} -1 V _{DD} 1	8 345 1.5k 400 1	$ \begin{array}{c} 18\\ 14\\ 0\\ V_{DD} + 3.5\\ 0\\ V_{DD} + 0.5\\ \frac{31}{8}\\ \frac{1}{4}\\ -455\\ 0\\ V_{DD} + 0.5\\ 0\\ -6\\ 22T_{acc} \end{array} $	V V V V V V V V V V V V V V V V V V V	50k to V _{DD} 50k to V _{DD} 3.9k to V _{DD} V _{out} < V _{DD} +5V 33k to V _{DD} C = 22n, R=100k See note 1 C = 4.7 μ R=100k C = 470n R = 3.3M Internal load provided T = $\frac{1}{1}$	
PPM input pulse width		1		221 _{osc}	μs	f_{osc}	

1

Note 1. R_{osc} (Pin 8) is 47k - 200k Ω , 2 fmon (Pin 9) = $f_{osc} \simeq \frac{1}{0.15CR}$

PIN FUNCTIONS

Negative Logic: 0 is OV (Vss), 1 is -17V (VDD)

1, 21, 23. Colour, Volume, Brightness

These three outputs are from three 5 bit current mirror D/A converters. They are referenced to the current drawn from pin 24, I_{ref} , and give 32 steps, $I_{ref}/8$ per step, from 0 to 31/8 I_{ref} . The outputs will be set to 12/8 I_{ref} by the NORMALISE input, the normalise code from the transmitter, or when the ON output goes to a 1.

2. Colour kill

This output gives a logic 0 when the COLOUR D/A output is zero.

3. V_{DD}

- -17V power supply
- 4. Vss OV power supply
- 5. On/Standby input A 1 on this pin will toggle pin 11 (ON O/P), generate

RECALL and AFC, normalise VOLUME, BRIGHTNESS and COLOUR, reset MUTE and set channel code 00000

6. Normalise input

A 1 will normalise the VOLUME, BRIGHTNESS and COLOUR outputs. A RECALL signal is generated and MUTE is reset.

7. Channel step

The channel code will step up by 1 as long as this pin is held at logic 1. The time period between steps is defined by an RC constant attached to pin 15. On reaching 20 the next step returns to 1. On output is set to ON, and AFC is generated. If the TV goes from Standby to ON, RECALL is generated and VOLUME, BRIGHTNESS and COLOUR are normalised. If VOLUME is not 0, MUTE is reset.

8. Oscillator time constant

An RC time constant is formed for the clock timing by connecting external components, one resistor and one capacitor, to this pin. Adjusted so that period of output on pin 9 is 1/20 of 0 interval of incoming PPM. 9. Oscillator monitor

This output is a division of two of the oscillator, and and is available for testing and setting purpose.

10. PPM I/P

The output of the front end amplifier is connected here such that the signal is in the form of positive pulses separated by time periods whose length define the data. With no signal, PPM input is at a logic 1. 11. On O/P

Open drain output. Logic 1 denotes TV set ON: Logic 0 TV set standby. Set to 1 when channel number changes. Set to 0 by power clear or by transmitter selected Standby. Toggle to opposite state by manual ON/STANDBY control.

12. Recall O/P

Open drain output. A 1 may be used to trigger an

Transmitter code	Function
EDCBA	
00000 00001 00010 00011 00100 00101 00101	Programme 1 Programme 2 Programme 3 Programme 4 Programme 5 Programme 7
00111 01000 01001 01010 01011 01011 01100	Programme 7 Programme 8 Programme 9 Programme 10 Programme 11 Programme 12 Programme 13
01101 01110 01111 10000 10001 10010 10010	Programme 14 Programme 15 Programme 16 Programme 17 Programme 18 Programme 19 Programme 20
10100 10101 10110 11000 11001 11010 11011 11100 11101 11110	Colour + Programme Step + Volume + Brightness + Standby Mute Recall Normalise Colour - Programme Step - Volume -
11111	Brightness –

Table 1 Basic 32 command set

on-screen display. A static output is generated by the manual controls ON/STANDBY and NORMALISE.

A pulse is generated by any channel change if the circuit switches to ON at the time, and by RECALL and NORMALISE commands from the transmitter.

13. AFC O/P

Open drain output, Logic 1 can inhibit the tuner AFC. A static output is generated by manual ON/STANDBY control. A pulse is generated by any channel number change.

14. Power clear

A capacitor and resistor connected here define the time delay for the power clear circuit, which normalises all D-A outputs etc.

15. Channel step time constant

An R-C time constant defines the time period between increments of the channel number when stepping.

16-20. Channel outputs

5 Outputs encode 20 channel numbers in binary code

EDCBA

Channel 1 is 00000

Channel 20 is 1 0 0 1 1

E is first and A is last in the PPM pulse train.

Channel 1 is set when ON goes to a 1

21. Volume.

- See Pin 1 22. Mute O/P

This will change state (toggle) on reception of a mute command and VOLUME O/P is zero MUTE O/P is held at 0.

- 23. Brightness See Pin 1
- 24. D/A Reference

A current drain Iref, set by a single external resistor will set the nominal step of the D/A outputs to $I_{ref}/8$.

ABSOLUTE MAXIMUM RATINGS (Vss = 0V).

С

ML922

REMOTE CONTROL RECEIVER

Plessey Semiconductors have developed and produced a range of monolithic integrated circuits which give a wide variety of remote control facilities. As well as ultrasonic or infra red transmission, cable. radio or telephone links may also be utilised. Pulse position modulation (PPM) is used with or without carrier and automatic error detection is also incorporated. Although initially designed with TV remote control in mind the devices may equally easily be applied for use in radios, tuners, tape and record decks, lamps and lighting, toys and models, industrial control and monitoring.

The ML922 demodulates the PPM signal received from the SL490 transmitter. After error checking the received code may condition a 10 programme memory or one of three D/A converters.

The receiver timing may be set by adjusting the oscillator time constant to give 40 periods at pin 6 equal to a 0 interval on the received PPM input.

FEATURES

- Accepts 5 Bit PPM
- All Timing From On-Chip Oscillator
- Incorporates Error Protection
- Easily Used With Ultrasonic or Infrared System
- Up to 10 Programmes With Latched Binary Output
- Automatic Power-On Reset and Normalise
- Many Other Facilities, AFC, Mute, Etc.

Fig. 2 ML922 remote control receiver block diagram

Fig. 1 Pin connections

QUICK REFERENCE DATA

- Power supply : 16V 14mA
- Demodulation : Pulse position with time window checking by on-chip oscillator
- Decoder: 5 bit with successive codeword comparison
- Programme : Latched 4 bit binary, 10 programmes
- Other outputs : On, AFC, Mute
- Local inputs : Programme step

Transmitter code	Function
EDCBA	
0000X	Programme 1
0001X	Programme 2
0010X	Programme 3
0011X	Programme 4
0100X	Programme 5
0101X	Programme 6
0110X	Programme 7
0111X	Programme 8
1000X	Programme 9
1001X	Programme 10
10100	Analogue 1 +
10101	Programme Step +
10110	Analogue 2 +
10111	Analogue 3 +
11000	Standby
11001	Mute (Analogue 2)
11011	Normalise
11100	Analogue 1 –
11101	Programme Step —
11110	Analogue 2 –
11111	Analogue 3 —

Table 1 Basic 21 command set for ML922

ELECTRICAL CHARACTERISTICS (see Fig. 3)

Test conditions (unless otherwise stated): V

$$ss = 0V$$

$$VDD = -10V$$

 $T_{amb} = 25^{\circ}C$

		Value				
Characteristic	Pin	Min.	Тур.	Max.	Unit	Conditions
Supply voltage Supply current Input logic level high low Output logic level high low Analogue output current range	3 3 5 8, 9, 12-15, 17 2, 16, 18	14 1 Vdd 1 Vdd 0	8	$ 18 14 0 V_{DD} + 3.5 0 V_{DD} + 0.5 31 8 $	V mA V V V V	50k to Vod 50k to Vod 3.9k to Vod
Analogue step size D/A reference, IREF Oscillator timing Power clear time constant Step time constant PPM input logic level high PPM input logic level high PPM input logic level low PPM input pulse width	2, 16, 18 1 6 10 11 7 7 7 7	0 250 - 1 V _{DD} 1	-345 3 400 2	-455 0 -6 22Tosc	I _{ref} μA kHz ms S V V V	

Note 1. Rosc. (pin 6) is $25k \rightarrow 200k\Omega$. fosc. $\simeq \frac{1}{0.15CR}$

Fig. 3 PPM infra-red receiver application with local up/down controls using a directly connected SL490

ABSOLUTE MAXIMUM RATINGS (Vss=0V).

Supply Voltage VDD	+0.3V to -25V
Voltage at any input	+0.3V to -25V
Maximum power dissipation	600mW
Operating temperature range	–10°C to +65°C
Storage temperature range	-55°C to +125°C

ML923

REMOTE CONTROL RECEIVER

The ML923 is an MOS/LSI monolithic integrated circuit for use as a receiver of remote control signals for television control. It accepts 24 of the 32 codes transmitted by the SL490 transmitter circuit in the Pulse Position Modulation (PPM) method of coding.

FEATURES

- 16 Channel Selection Codes
- Single Analogue Output
- Mute Output (Toggle)
- On-set Controls Channel Step, ON, Reset
 - Normalise to a of Max Output on Analogue Output
 - Outputs Provide Control of ON/STANDBY, Analogue Mute, and AFC Defeat
- Choice of Power-Up Function:
 - a) Power Up to Standby State, Switch to ON State by Local or Remote Command and STANDBY by Remote Command.
 - b) Power Up to ON State, Switch OFF with Solenoid Operated Mains Switch by Local or Remote Command.

Fig.1 Pin connections

Fig.2 ML923 block diagram

Test conditions (unless otherwise stated):

 $T_{amb} = +25^{\circ}C$, $V_{SS} = 0V$, $V_{DD} = -16V$

	Dia	Din Value		ie	11-14-	Oraditions	
Characteristics	Pin	Min.	Тур.	Max.	Units	Conditions	
Supply voltage	1	14		18	٧		
Supply current	1		6		mΑ		
Input logic level high	6, 17, 18	-1		0	v		
Input logic level low		VDD		V _{DD} + 3.5	v		
Output logic level high	3, 4, 11, 14	-1.5		٥٧	v	50k to V	
Output logic level low	8	VDD		V _{DD} + 0.5	v	SOK IO V _{DD}	
Analogue output current range	10	0		31 8	1 Ref	3.9k to V _{DD}	
Analogue step size	10	0	18	4	1 Ref	$V_{out} < V_{DD} + 5V$	
D/A reference, I ref	9	- 250	-345	- 455	mΑ	33kΩ to V _{DD}	
PPM		15		150 k	Hz	Typical TC	
Oscillator frequency	1		3k		Hz	$C = 22 nFR = 100 k\Omega$	
On input or standby input time constant for power on	6 or 17	250		500	ms		
Step time constant	7	ļ	1		s	$C = 470 nFR = 3.3 M\Omega$	
PPM input logic level high ('1')	2	-1		0	V		
PPM input logic level low ('0')	2	V _{DD}		-6	v		
PPM input pulse width	2	1		22 T _{osc}	μS	$T = \frac{1}{f_{osc}}$	

Note 1 R_{osc} (pin 5) is $47 k\Omega - 200 k\Omega$

 $f_{osc} \simeq \frac{1}{0.15CR}$

OPERATING NOTES

The receiver operates on a timescale fixed by an internal oscillator and its external timing components. The oscillater may be adjusted to any value between 15Hz and 150kHz (allowing different receivers to respond to different transmission rates within the same operating area).

A counter is reset whenever a pulse is received and allowed to count at half the oscillator frequency. For example, taking an oscillator frequency of 1.56 kHz:-

Resetting is blocked for the first 14ms and windows from 14ms to 22ms and from 22ms to 40ms determine whether a '1' or a '0' is present. Periods between pulses of 40ms to 80ms are recognised as word intervals. Checks are made to ensure 6 pulses, or 5 bits, are received for a word to be valid, and only after two consecutive and identical words is the receiver allowed to respond to the incoming code. Channel step time period is derived from an external time constant.

PIN FUNCTIONS

Positive Logic: Logic '1' = V_{ss}, 0V Logic '0' = V_{DD}, -16V

1. Oscillator Time Constant An RC Time Constant at this pin defines the internal clock frequency. The clock frequency may be varied from 15Hz to 150kHz.

2. PPM Input The output of the Front End Amplifier is connected to the pin; the signal must consist of a normal logic '0' level with pulses to logic '1', corresponding to the PPM pulse from the transmitter.

3. ON/SB Output Open drain output. Logic '0' denotes onset. Logic '1' standby set. Set to '0' when channel number changes, and by ON input at logic '0', set to '1' by standby input or by transmitter selected OFF.

4. Recall O/P Open drain output. A '0' may be used to trigger an on-screen display. A '0' is output during an input at pin 17, ON input. The pulse to logic '0' is generated by any channel change if circuit switches to ON from Standby, and by recall and normalise commands from the remote transmitter.

5. AFC O/P Open drain output. A logic '0' can inhibit tuner AFC. A static output is generated by manual ON control. A

pulse is generated by any channel number change.

6. Standby Input A logic '0' will select standby state and normalise the analogue output to 3/8 maximum and select programme 1. An RC time constant may be connected to select standby at power ON.

7. Channel Step Time Constant An RC time constant defines the time period between increments of the channel number when stepping.

8. MUTE Output This will change state (toggle) on receptin of a Mute command or will remain at logic '1' if the D-A output is zero. The output is reset by any channel change command.

9. Analogue Reference A current drain attached to this input will define the current step of the D-A output. The current is equal to 8 output current steps.

10. Analogue Output The output of a current mirror D-A convertor provides a current source of between 0mA and 1.3mA. It is variable in 32 steps, UP or DOWN. It is normalised to 3/8 maximum value by the ON/SB input, and by normalise command from the transmitter.

11, 12, 13, 14. Channel Selection Outputs These outputs encode the 16 channels in binary code.

	Α	В	С	D
Channel 1	0	0	0	0
Channel 16	1	1	1	1
Set to channel *	l on set	t swite	ch ON.	

15. V_{DD} – 14V to – 18V power supply

16. V_{ss} 0V (Ground)

17. OŇ *I/P* A logic '0' will switch the ON/SB output to ON (logic '0'). Channel 1 is selected and analogue output is normalised to 3/8 maximum. An RC time constant may be connected to select set ON at power on. The AFC defeat signal is generated and Mute is reset.

18. Step Input The channel code will step up by 1 as long as the pin is held at logic '0'. The time period between steps is defined by an RC constant on pin 10. When the channel code reaches 16 it will go to 1 next step. A step input will set ON/SB output to ON and normalise the analogue output. Mute is reset if analogue = 0.

-33 TR: 1.8k Note:
1. An output is available to give sound mute during programme switching. With the inclusion of an extra switch on the transmitter and a transistor in the receiver, remote control of mute is possible.
2. To incorporate accurate fine tuning the addition of a single transistor provides AFC defeat as long as any local programme switch is kept depressed. VARICAP CONTROL AFC DEFEAT 11 11 10 6 Ζ 本 木 Τ 4. - ala ML238 3.9 k 3.9 k 3.9 k 3.9 k 3.9k 3.9k 3.9% 3.91 \$_\$ Ŧ + 16 V m + 33 V 47 n 🚍 100 k 100 k = 27 n 56 k **=** 0.1 µ 11 ML923 SL480 1 006 TBA 120 µ 5.6k h 39k 2.2 n 0.1µ ± 0.1µ 820 8.24 33 k 4.7 k 100 476

> RECALL ON

STEP ON

ML923

Note:

141

	CODE				FUNCTION
E	D	С	В	A	
0	0	0	0	0	Channel 1
0	0	0	0	1	Channel 2
0	0	0	1	0	Channel 3
0	0	0	1	1	Channel 4
0	0	1	0	0	Channel 5
0	0	1	0	1	Channel 6
0	0	1	1	0	Channel 7
0	0	1	1	1	Channel 8
0	1	0	0	0	Channel 9
0	1	0	0	1	Channel 10
0	1	0	1	0	Channel 11
0	1	0	1	1	Channel 12
0	1	1	0	0	Channel 13
0	1	1	0	1	Channel 14
0	1	1	1	0	Channel 15
0	1	1	1	1	Channel 16
1	0	1	0	1	Channel Step +
1	0	1	0	0	Analogue +
1	1	0	1	0	Recall
1	1	0	0	1	Mute (Toggle)
1	1	0	1	1	Normalise
1	1	0	0	0	OFF
1	1	1	0	1	Channel Step-
1	1	1	0	0	Analogue-

Table 1 Command set

ML924

REMOTE CONTROL RECEIVER

The ML924 is an MOS/LSI integrated circuit for use as a receiver of remote control signals generated by the SL490 transmitter circuit, using PPM (Pulse Position Modulation) encoding technique. The receiver has 5 digital outputs whose response to PPM codes may be programmed by six control lines. It has a handshake interface which provides communication with microprocessors and computers.

FEATURES

5 Open drain outputs with enable

Handshake or interrupt microprocessor and computer interface signals

On-Chip oscillator

6 control lines to programme output response

3 selectable output modes

Fig.1 Pin connections (top view)

Fig.2 ML924 block diagram
ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): VSS = 0V; VDD = -16V; $T_{amb} = +25^{\circ}C$

Characteriatia	Pin Value					Conditions		
Characteristic	Fin	Min.	Тур.	Max.	onnis	Conditions		
Supply voltage	9	12		18	٧			
Supply current	9		6		mA			
Input logic level high ('1')	3-8, 17	-1		0	v			
Input logic level low ('0')		VDD		VDD + 3.5	v			
Output logic level high ('1')	10, 12-16	-1		ov		50k to VDD		
Output logic level low ('0')		VDD		VDD + 0.5	v	50K 10 VDD		
Oscillator frequency	1	15	3k	150k	Hz	Typical TC: $C = 22 nF$, $R = 100 k\Omega$		
PPM input logic level high ('1')	2	-1		ov				
PPM input logic level low ('0')		VDD		-6V				
PPM input pulse width	2	1		22Tosc	s	$T = \frac{1}{fosc}$		
Power clear time constant	11	1	400		ms			

NOTE

Rosc (Pin 1) is 56 k Ω to 150 k Ω , fosc $\simeq \frac{1}{0.15 \text{ CR}}$

Fig.3 Application for receiving 32 codes from SL490 transmitter. Latched outputs.

PIN FUNCTIONS

Positive Logic: Logic '1' = V_{SS} , 0 V Logic '0' = V_{DD} , 16 V

1. Oscillator TC An RC time constant at this pin defines the internal clock frequency. The clock frequency may be varied from 15 Hz to 150 kHz.

2. PPM Input The output of the Front End Amplifier is connected to this pin; the signal must consist of a normal logic '0' level with pulses to logic '1'.

3-8. Control Word C_0 to C_5 Six control bits form the control word which programs the response of the five outputs (see Table 1).

9. V_{DD} - 12V to - 18V Power Supply.

10. Data Ready Open drain output. An output of logic '1' indicates the reception of a valid PPM word. It will remain at logic '1' for the duration of transmission.

11. Power Clear A capacitor and resistor connected to this pin define the time delay for the Power Clear Circuit.

12-16. Outputs E-A Open drain outputs which respond to the PPM input as defined in Table 1.

17. Output Enable A logic '1' will enable outputs A to E. A logic '0' will turn all outputs off.

18. Vss 0V (Ground).

OPERATING NOTES

The receiver operates on a time scale fixed by an internal oscillator and its external timing components. The oscillator may be adjusted to any value between 15Hz and 150kHz (allowing different receivers to respond to different transmission rates within the same area).

A counter is reset whenever a pulse is received and allowed to count at half the oscillator frequency. For example, at an oscillator frequency of 1.5kHz, resetting is blocked for the first 14 ms and windows from 22 ms to 40 ms determine whether a '1' or a '0' is present. Periods between pulses of 40 ms to 80 ms are recognised as word intervals. Checks are made to ensure 6 pulses of 5 bits, are received for a word to be valid, and only after two consecutive and identical words is the receiver allowed to respond to the incoming code.

By means of the six control lines, the outputs can respond to the PPM input data in three ways:

1. 5 bit binary output with combinations of latched or momentary responses as shown in table 1.

2. 4 independant outputs with combinations of latched or momentary output as shown in table 1. Any output on 1 or 4 receivers can be addressed by each PPM word.

3. The PPM word can be an address or data depending on the logic state of bit e. If PPM bit e is '0', the remaining four bits (a, b, c and d) select one of 16 receivers. If bit e is '1', bits a to d control the outputs A to D. Outputs can be all latched or all momentary.

	Co	ontro	l Wo	rd		Control	Output Response				ontrol Output Response Interpretation of PPM Words									s	
C5	C4	C3	C2	C1	C0	Mode	E	D	С	В	A	e	d	C	b	a	e	d	C	b	а
0	0	0	0	0	0	1	LA	LA	LA	LA	LA	E	D	с	в	A					
	0	0	0			1					M		PPM	dec	oder	+					
0	0	0	1			1		LA	M	M	M		on al	lout	puts	5					
0	0	1	1	1	1	1	LA	M	м	M	M	ĺ	imm	nedia	ately						
0	1	1	1	1	1	1	м	М	м	м	м										
0	0	1	0	z	Z	2	_	S/R	S/R	S/R	S/R	0	Y	Y	z	z	1	Υ	Y	z	ż
0	1	0	0	z	z	2	-	S/R	S/R	S/R	м		Ou	tout	Rece	eiver	1	Out	Dut	Rec	eiver
0	1	0	1	Z	z	2	-	S/R	S/R	м	м		add	ress	add	ress		add	ress	ado	iress
0	1	1	0	z	Z	2	-	S/R	М	м	м		Res	ets a	n S/F	3		Set	s an S	S/R t	vpe
												-1	type	out	put		L	out	outo	r pul	ses a
					_													mor	nent	ary o	utput
1	0	z	z	z	z	3	_	LA	LA	LA	LA	0	z	z	z	z	1	D	с	в	A
1	1	Z	z	z	Z	3	-	М	м	м	м	Add	ress	Rec	eive	r	Dat	a F	PM	lata	sent
												mo	de	add	iress		moc	e	lo ou	tput	sof
																			add	ress	ed r

Table 1

NOTES:

2. Control Mode 2: ZZ is a 2 bit address for the receiver YY selects one of 4 outputs

YY	OUTPUT
00	А
01	В
10	с
11	D

3. Control Mode 3: ZZZZ is a 4 bit address that selects, by which of 16PPM codes a receiver will be selected. If PPM bit e = '1', the rest of that PPM word will be read as data. If PPM bit e = '0' the rest of that PPM word will be read as an address.

VDD supply and all inputs wrt VSS	+0.3V to -25V
Storage temperatures	~55°C to +125°C
Operating temperature ambient	– 10°C to +65°C

^{1.} Control Mode 1: Direct Response to the PPM Code

Fig.4 Interface to commonly used microprocessors

ML925

REMOTE CONTROL RECEIVER FOR TOYS

The ML925 is an MOS/LSI integrated circuit for use as a decoder of PPM remote control commands transmitted by the SL490 or SL491 circuit. It is designed to control either a toy vehicle with two-speed drive motor and a three position latching steering system, or a vehicle with momentary action steering and a third motor, typically a winch. This second vehicle type also has four selectable speeds. Both types have horn, headlights, hazard flasher and turn indicator facilities.

The circuit can operate on the first set of 16 SL490 commands or the second set of 16, thus giving simultaneous control of two independent vehicles with the same integrated circuit type in both.

FEATURES

- ⁴Multifunction Toy Control
- High Power, Free Drain Buffers on all Outputs
- Uses Well-Proven High Security PPM Coding with Double Word Checking
- Minimum Component Interfaces Required to Motors and Lamps
- Direct Connection to SL480 Infra-red Preamplifier

Fig.1 Pin connections

V _{DD} supply inputs with respect to V _{SS}	+0.3V to -25V
Storage temperature	-55°C to +125°C
Operating ambient temperature	– 10°C to +65°C

Fig.2 ML925 block diagram

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

 $T_{amb} = +25^{\circ}C$, $V_{ss} = 0V$, $V_{DD} = -15V$

Characteristic	Pin Value			Unito	Conditions		
Characteristic	F 10	Min.	Тур.	Max.	Units	Conditions	
Supply voltage, V _{DD}	1	- 12	- 15	- 18	v		
Supply current	1		8	12	mA		
PPM input high	3	-1 V		0	V		
Code estudo coloct high	10 15	V DD		-0	Ň		
low	12, 15	V _{DD}		- 10	v		
Steering feedback, speed time	6, 14	- 2.5	-3	-3.5	v		
Constant threshold							
Output voltage motor drives	8-11		-0.2	-0.5	v	Output current = 10mA	
other drives	4, 5 13, 18		-0.2	-0.5	v	Output current = 5mA	
Output leakage all outputs				1	μA	Output voltage = - 15V	
PPM oscillator frequency	2	15	4	150 k	Hz kHz	$C = 33 nF, R = 50 k\Omega$	
Speed control oscillator	6		50		Hz	$R_{pos} = 120 k, R_{peg} = 270 k\Omega, C = 100 nF$	
Flasher rate	5		0.8		Hz	For pin 6 as above	
PPM input pulse width	3	1		22 T	μS	T = 1/f at pin 2	

	TRANS	MITTER	CODES		VEHICLE TYPE				
E	D	С	В	Α	TYPE A, 'CAR' TYPE B, 'TRUCK'				
x	0	0	0	0	STOP	STOP			
X	0	0	0	1	FORWARD STRAIGHT	FORWARD			
X	0	0	1	0	REVERSE STRAIGHT	REVERSE			
X	0	0	1	1	HORN (MOMENTARY)	HORN (MOMENTARY)			
X	0	1	0	0	NOT USED	NOT USED			
X	0	1	0	1	FORWARD LEFT	STEER LEFT (MOMENTARY)			
X	0	1	1	0	REVERSE LEFT	WINCH IN' (MOMENTARY)			
X	0	1	1	1	FLASHER ON/OFF	FLASHER ON/OFF			
X	1	0	0	0	NOT USED	NOT USED			
X	1	0	0	1	FORWARD RIGHT	STEER RIGHT (MOMENTARY)			
X	1	0	1	0	REVERSE RIGHT	WINCH OUT' (MOMENTARY)			
X	1	0	1	1	LIGHT ON/OFF	LIGHTS ON/OFF			
X	1	1	0	0	SPEED 1	SPEED 1			
X	1	1	0	1	SPEED 1	SPEED 2			
X	1	1	1	0	SPEED 2	SPEED 3			
X	1	1	1	1	SPEED 2	SPEED 4			

Table1 Decoder response to PPM codes

CIRCUIT DESCRIPTION

The decoder operates on a timescale fixed by an internal oscillator and its external timing components. The oscillator may be adjusted to a wide range of frequencies to allow different decoders to respond to different PPM rates. PPM words consist of six narrow pulses separated by 5 gaps, a short gap for a '1' and a long gap for a '0', in the ratio 2 to 3. Words are separated by a gap of ratio 6. Two complete correct adjacent words are required before the decoder will respond.

A second on-chip oscillator provides a frequency which sets the mark/space ratio of the motor speed control and hazard and indicator flasher rate. A power-on reset is also provided during initial power-up.

Simultaneous control of two independent vehicles is possible. For one vehicle the first bit of the 5-bit transmitted code is a '0' and for the second vehicle the first bit is a '1' as shown in Table 1.

OPERATING NOTES

1. In Table 1, X determines one of two vehicles to be controlled by independent controllers within the same area. The same decoder design can drive either vehicle. X = 0 for vehicle 1, X = 1 for vehicle 2.

Momentary controls only give an output for the duration of a PPM command stream, i.e. for as long as a transmitter button is depressed.

 Hazard and lights control codes provide a toggle action; push once for on, push again for off. There is an internal time-out within the decoder to cater for interruptions in the PPM stream by noise.

4. Vehicle type A will drive at half or full speed and has a latching drive. The steering has three positions: hard left, centre and hard right and is driven momentarily during code transmission. The centre position may be indicated by a contact running on a conductive track attached to the steering bar (see fig.4). The track should have a non-

conducting section at the centre and the two halves should be taken to V_{ss} and V_{pp} respectively. The contact, which should be fixed to the body of the vehicle, is attached to a pin on the decoder and a two resistor bias network. The contact must not conduct with either area when in the centre position.

5. Vehicle type B also has a latched drive direction , which remains latched until STOP is pressed; but its steering is momentary, so that it will progress left (say) until the command is removed, and stay in that position until a further steering command is received. This provides a timeproportional steering system.

6. Vehicle type B has four possible drive speeds; quarter, half, three-quarters and full speed. From STOP or power-on the speed selected is quarter, or speed 1. Further speeds are selected by the four latched speed select commands. The steering speed or rate of progression is proportional to the drive speed.

7. Vehicle type B has provision for single speed driving of a third motor (forward or reverse). Control of this motor is momentary, stopping when commands cease to be transmitted.

8. One output of the decoder provides a continuous flashing signal. This can be gated with various other outputs of the decoder (using simple transistor gates) to give automatic flashing lights or buzzers when functions are operating. Examples are: left and right turn indicators, buzzer when reversing, warning lamp when winch in operation or siren switched on and off by 'lights' command.

Fig.3 Infra-red control for car or truck

PIN FUNCTIONS

- 1. V_{DD} 12V to 18V power supply.
- 2. Oscillator time constant

An RC time constant of a capacitor to V_{ss} and a resistor to V_{DD} defines the internal clock frequency for demodulating PPM.

3. PPM input

The output of the 'front end' amplifier is connected here; the signal must be a normally low level of -6V, and have PPM pulses going positive to - 1V.

4. Hazard

An open drain output to drive a flashing lamp or buzzer at a rate determined by pin 6 time constant. Toggled on or off by a single PPM code.

5. Indicator signals

A permanently pulsing output at a rate determined by pin 6 time constant. Open drain drive.

Speed time constant and power-on reset 6

A capacitor and resistor to V_{DD} and a resistor to V_{ss} define the frequency of the motor speed control pulses and the warning and indicator pulses.

7. V_{ss} 0V power supply.

8. Forward

Open drain high power latched drive to the drive motor circuit. When on, the drive motor should move the vehicle forward.

9. Reverse

Open drain high power latched drive to the drive motor circuit. When on, the drive motor should move the vehicle in reverse.

10. Steer left

Open drain high power drive to the steering motor circuit. When on, the steering should move on the left.

11. Steer right

Open drain high power drive to the steering motor circuit. When on, the steering should move to the right.

12. Vehicle type

An input to determine the type of vehicle and the interpretation of control codes. V_{SS} selects Type A (car) V_{DD} selects type B (truck).

13. Lights

Open drain output to drive headlights etc. Toggled on or off by a single PPM code.

14. Steering

An input from the centre contact of the steering feedback system for vehicle type A. A resistor to V_{SS} and a resistor to V_{DD} are required as a bias chain.

15. Code set

An input to determine which set of 16 PPM codes the decoder responds to. V_{DD} will select the first 16 (E = 0) and V_{ss} will select the last 16 (E = 1).

16. Third motor +

Open drain high power drive to a third motor circuit for vehicle type B.

17. Third motor-

Open drain high power drive to a third motor circuit for vehicle type B. Drives motor in opposite direction to pin 16.

18. Horn

Open drain output to drive a horn or buzzer. A momentary output selected by one PPM code.

Operation of the various functions is described more fully in 'operation' and in Table 1.

ML926/7 REMOTE CONTROL RECEIVERS (With Momentary Outputs)

The ML926 and ML927 are MOS LSI monolithic circuits for use as receivers of remote control signals for television control and many other applications. They are general purpose devices each receiving sixteen of the thirty-two codes transmitted by the SL490 circuit as pulse position modulation (PPM).

FEATURES

- 📕 Minimum Package Size 8-Lead Minidip
- Four Outputs Indicate in Binary the Code Currently Being Received, and Are Switched Off (Low) When No Valid Code is Detected.
- On-Chip Oscillator
- High Power, Free Drain, Output Buffers

OPERATING NOTES

The receiver operates on a timescale fixed by an internal oscillator and its external timing components. The oscillator may be adjusted to any value between 15Hz and 150kHz (allowing different receivers to respond to differ – ent transmission rates within the same area).

A counter is reset whenever a pulse is received, and allowed to count at half the oscillator frequency. For example, take an oscillator frequency of 1.5kHz:-

Resetting is blocked for the first 14 ms and windows from 14ms to 22ms and from 22ms to 40ms determine whether a '1' or a '0' is present. Periods between pulses of 40ms to 80ms are recognised as word intervals. Checks are made to ensure 6 pulses, or 5 bits, are received for a word to be valid, and only after two consecutive and identical words is the receiver allowed to respond to the incoming code.

The ML926 responds only to codes 00001 to 01111 from the SL490 transmitter whereas the ML927 responds to codes 10001 to 11111.

ABSOLUTE MAXIMUM RATINGS

V _{DD} supply and inputs w.r.t. Vss	+0.3V to - 25V
Storage temperature	-55°C to +125°C
Operating temperature ambient	– 10°C to +65°Č

Fig. 1 Pin connections

Fig 2 Block diagram

Fig. 3 Test circuit

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

 $V_{DD} = -16V$

 $T_{amb} = 25^{\circ}C$

Characteristic			Value		Unite	Conditions	
		Min.	Тур.	Max.	Units	Conditions	
Operating supply voltage range Current consumption	1	12 2	14 3	18 4	V mA		
PPM input Input logic level high Input logic level low Input pulse width	3 3 3	1 Vdd 1		O 6 22T _{OSC}	V V µsec	$T = \frac{1}{f_{osc}}$	
Oscillator time constant See Note 1							
Oscillator frequency	2	15	3k	150k	Hz Hz	Typical TC: 22nF to Vss	
Variation wrt V_{DD}			1		%/V	100k to V _{DD}	
Output voltage high Output device leakage (Output OFF)	5-8 5-8	- 1.5		0 1	V µА	$R_L = 3.0 K$ to VDD	

Note 1. R_{osc} (Pin 2) is $47k\Omega \rightarrow 200k\Omega \cdot f_{osc} \simeq \frac{1}{0.15CR}$

PIN FUNCTIONS

1. VDD

-14V to -18V power supply

2. Oscillator time constant

An RC time constant of a capacitor and resistor at this pin defines the internal clock frequency. The clock frequency may be varied from 15Hz to 150kHz.

3. PPM input

The output of the 'front end' amplifier is connected to this pin; the signal must consist of a normal logic 'low' level with pulses to logic 'high' corresponding to the PPM pulses from the transmitter.

4. Vss 0V (ground)

5-8. A.B.C.D

Four open drain high power transistors give a binary coded output of the valid code being received.

	Momentary binary outputs						
Transmitter Code	ML926	ML927					
EDCBA	DCBA	DCBA					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}$						
$\begin{array}{c} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{array}$		$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{array}$					

Table 1 Response to SL490 codes

ML928/9

REMOTE CONTROL RECEIVERS (WITH LATCHED OUTPUTS)

Plessey Semiconductors have developed and produced a range of monolithic integrated circuits which give a wide variety of remote control facilities. As well as ultrasonic or infra-red transmission, cable, radio or telephone links may also be utilised. Pulse position modulation (PPM) is used with or without carrier and automatic error detection is also incorporated. Although initially designed with TV remote control in mind the devices may equally easily be applied for use in radios, tuners, tape and record decks, lamps and lighting, toys and models, industrial control and monitoring.

The ML928 and ML929 are general purpose remote control receivers, each receiving and latching 16 of the 32 codes transmitted by the SL490 circuit in the PPM (Pulse Position Modulation) mode. The ML928 responds to codes 00000 to 01111 only, and the ML929 to codes 10000 to 01111. Both devices are packaged in 8-lead minidip to minimise board area. The on-chip oscillator may be adjusted from 15Hz to 150kHz, allowing different transmission rates. They have a high degree of immunity to incorrect codes; there must be two consecutive correct codes received before the outputs can change.

FEATURES

- Accepts 5 Bit PPM
- On-Chip Oscillator, 15Hz to 150kHz Range
- Easily Used With Ultrasonic, Infra-Red or Other Transmission Media
- Four High Drive Outputs
- 16 Latched States
- Minimum Sized Package

QUICK REFERENCE DATA

- Power Supply: 12V to 18V. Typical 4mA at 16V.
- Demodulation : Pulse position with time window checking by on-chip oscillator
- Decoder: 5 Bit with successive codeword comparison
- Outputs: Maximum 15mA sourced from open drain drive
- Logic convention : Logic 0 output transistor ON, pulls output to V_{ss} Logic 1 – output

Fig. 1 Pin connections

Fig. 2 ML928, ML929 remote control receivers block diagram

Fig. 3 Test circuit

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

 $\mathsf{Vss}=\mathsf{0}\mathsf{V}$

 $V_{DD} = -16V$ $T_{amb} = +25^{\circ}C$

			Value			Conditions	
Characteristic	Pin	Min.	Тур.	Max.	Units		
Current Consumption VDD Supply voltage	1 1	3 —12	4	5 —18	mA V		
PPM input Logic '0' level Logic '1' level	3	—1 Vdd		0 —6	v v		
Input pulse width		1		$22T_{osc}$	μS	$T_{osc} = \frac{1}{f_{osc}}$	
Oscillator Timing Frequency	2	15	4 k	150k	Hz Hz	Typical TC : 22 nF to Vss, 100kΩ to Vpo	
Variation w.r.t. Vod			1		%/V.		
Latched binary output Logic '0' output voltage	5, 6, 7, 8	- 1.5		0V	۰v	RL = 3.0k to VDD	
Output leakage in logic '1' state				1	μA		

Note 1. Rosc. (pin 2) is 25k -. 200 k Ω . fosc. $\simeq \frac{1}{0.15 \text{CR}}$

Fig. 4 Forward and reverse drive of two small DC motors

PIN FUNCTIONS

Negative logic: '0' is 0V (Vss), '1' is - 12V to -18V (V_{DD})

1. VDD

-12V to -18V power supply

2. Oscillator time constant

An R-C time constant at this pin defines the internal clock frequency. The clock frequency may be varied from 15Hz at 150Hz and should be set so that there are 40 périods in one 't_o' transmitter pulse interval.

3. PPM input The output of the 'front end' amplifier is connected to this pin; the signal must consist of a normal logic '1' level with pulses to logic '0' corresponding to the PPM pulses from the transmitter.

4. Vss 0V (ground)

5-8. A,B,C,D

Four open-drain high power transistors give a binary coded latched output of the last valid code received.

ML928/9

	Latched binary outputs					
Transmitter Code	ML928	ML929				
EDCBA	DCBA	DCBA				
$ \begin{smallmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0$	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{array}$	No change				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No change	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ \end{array}$				

Fig. 5 Direct drive of LEDs

ABSOLUTE MAXIMUM RATINGS

V_{DD} supply and inputs w.r.t. Vss Storage temperature Operating temperature ambient

+0.3V to -25V -55°C to +125°C -10°C to +65°C

SL470

BCD TO 1 OF 10 DECODER/VARICAP DRIVER

FEATURES

- Up To 10 Programmes
- Direct Varicap Voltage Selection
- TTL Level Compatible Inputs
- May be Directly Driven by ML920 Series Receivers
- Low Component Count

QUICK REFERENCE DATA

Output drive 2mA

C(22)

0

0

õ

0

1

Power supply 33V 3mA

1 out of 10 outputs selected high

Input 4 Bit BCD, TTL compatible

B(21)

0

0

1

1

Ò

A(2º)

0

1

0

1

Ò

O/P (high)

123

4

5

Low Cost

D(23)

0

0

õ

0

Õ

Can Be Used To Drive Indicators

ov []		0/P5	
0/P 6 🗋 2	15	0/P 4	
0/P 7 🛛 3	14	0/P 3	
0/P 8 🖸 4	SL470	0/P 2	
0/P9[5	12	0/P1	
0/P 10 🗖 6	r	D v _{cc}	
I/P 0 🗖 7	10		
1/P C 🗆 8	9	р 1/2 В	DP16

Fig. 1 Pin connections

6 7 Ò 1 0 1 0 1 1 0 8 0 1 1 1 0 0 9 1 0 10 0 0 1 1

Table 1 Decode table

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

 $\begin{array}{l} T_{amb}=25^\circ C\\ Vcc=33 V \end{array}$

Characteristic	Pin	Value			Unito	Conditions
Characteristic	ГШ	Min.	Тур.	Max.	Units	Conditions
Operating supply voltage Supply current Selected output level Unselected output levels Input high state Input low state Input current	11 11 2–6, 12–16 2–6, 12–16 7–10 7–10 7–10	30 0.5 1.7 –0.3	36 3 V _{CC} – 1.5	6 Vcc-3.5 5 +0.4 1.5	V mA V V V V MA	O/Ps unloaded lout = 2mA 100k load to 0V V _{in} = 1.7V

Fig. 2 Logic diagram

Fig.3 Typical application circuit for 8 programmes

Fig. 4 Complete remote control system

Storage temperature	—55°C to +125°C
Operating temperature	10°C to +65°C
Supply voltage	36V

SL480

INFRA-RED PULSE PRE-AMPLIFIER

The SL480 is a bipolar integrated circuit containing three amplifier stages. Its output is directly compatible with the ML920 range of remote control receiver circuits. It is packaged in an 8-lead plastic package. The gain of the amplifier stages may be adjusted to suit the application. The input impedance is approximately $20M\Omega$.

Fig. 1 Pin connections

FEATURES

- Minimum Component Solution to Infra-Red Detection
- Adjustable Gain
- Directly Compatible With Plessey ML920 Range of Receivers
- May Be Used As A General Purpose 100kHz Limiting Amplifier

Supply,Vcc	20V
Maximum power dissipation	480mW
Operating temperature range	–10°C to +65°C
Storage temperature range	–55°C to +125°C

Fig. 2 SL480 block diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

lamb ≔	= 25°C
Vcc =	+15V

Characteristic	Din	Dia Value				Que ditions
Characteristic	FIII	Min.	Тур.	Max.	Units	Conditions
Operating voltage range Supply current Open loop gain Input impedance Output current sink Internal pullup resistor Quiescent O/P voltage (low) Pulse output (high)	3 3 4, 2 4 2 2 2 2 2	12 9 15.5	1.5 100 20 100 50 11	18 4	V mA dB μA kΩ V V	Sum of 3 stage gains At reduced gain No load

OPERATING NOTES

An external resistor of, typically, $330k \Omega$ between pins 4 and 3 provides current for the photo detector diode connected across pins 4 and 6. Any voltage generated across the diode by incident light is amplified.

The gain of each stage may be readily adjusted by external resistors in series with decoupling capacitors between pins 7, 8 or 1 and ground. For maximum gain the resistors are dispensed with except at pin 8.

Typical decoupling capacitors are 22nF. The output goes high towards Vcc when light is detected. This is compatible with the PPM input of the ML920 series of remote control receivers. The SL480 is compatible with the full power supply range of the ML920 series and can also be used at a lower supply voltage as long as Vcc is common to Vss of the MOS device, i.e. common positive.

Fig.3 Gain adjustment, common positive

The circuit diagram of the SL480 infra-red pulse amplifier is shown in Fig.5. Pulses generated by an infra-red receiver diode are amplified to a suitable level for direct connection to the input of any of the Plessey Semiconductors ML900 series of remote control receiver circuits.

For basic operation, the receiving diode and SL480 input is biased with a single resistor to the positive supply. Any infra-red light reaching the diode generates a leakage current which causes a voltage drop across the bias resistor.

The SL480 input stage consists of a compound emitter follower (TR1 and TR2) which provides a high input impedance and allows a relatively high diode load resistor as well as a voltage drop of around 1.3V between the input and the bases of the first amplifier stage (TR6, TR7).

Transistors TR6 and TR7 form a differential amplifier which is designed to prevent low frequency or DC input signals from reaching subsequent stages of the amplifier. Since the bases of transistors TR6 and TR7 are internally connected by the 6.3k resistor R3, low frequency signals are applied to both sides simultaneously causing no change in collector current and therefore no output to the second stage. Higher frequency signals are amplified because TR7 base is decoupled externally on pin 7.

Stage 2 gain is provided by a similar differential amplifier to stage 1 except that the relatively stable DC input voltage provided by stage 1 output allows the use of a tail resistor R11 rather than a current source. Decoupling of AC signals is provided at pin 8.

Fig.4 Compact infra-red receiver

Fig.5 SL480 circuit diagram

Stage 3 is similar to stage 1, but with an extra current mirror (TR24 to TR26) to provide signal inversion at the output.

The standing current through the output load resistor and thus the output voltage, is set by the current in R15. This current will amount to about 100μ A, and give an output voltage about 5V below the positive rail with a 15V supply.

It should be noted that there is a parasitic zener diode of about 6V in parallel with the output load resistor R19; this diode will be destroyed if the output is shorted to the negative supply rail. Stage 3 decoupling is provided at pin 1.

With a 15V supply, the input stage will operate with input voltages ranging from 15V down to 5V. This will allow the device to function satisfactorily in high ambient light conditions which produce high leakage currents in the receiving diode. A single transistor circuit is shown in Fig.6, which prevents the input voltage to the SL480 changing for diode leakage currents up to several milliamps. By careful choice of R and C values, this circuit can be made to give extra rejection of low frequency modulation such as that produced by incandescent lamps.

Under conditions of very high ambient light the circuit may show signs of instability. This can be prevented by connecting a 2.2k resistor in series with the transistor emitter.

If required, the gain of each stage of the SL480 can be set individually by connecting a resistor in series with the decoupling capacitor. A 6k resistor will reduce the stage gain to half its full value of about 40dB. Normally it is only necessary to reduce the gain of the second stage with about 33-56k.

If preferred the decoupling components on pins 1, 7 and 8 can be earthed to the negative supply on pin 6.

As with any high gain device, care is needed in the layout of printed circuit boards to prevent instability. All decoupling and input components should be mounted close to the SL480. A suitable printed circuit layout for the SL480 is shown below.

Decoupling of the power supplies local to the SL480 is advisable. A resistor of about 560ohms in series with the negative rail and a parallel capacitor of 68microfarads being adequate (see Fig.6).

The decoupling resistor should always be in the negative supply as the ML920 series remote control circuits have a threshold close to the positive rail, and any voltage drop here would reduce the noise immunity.

Fig.6 Typical infra-red amplifier application with improved detector biasing

SL490

REMOTE CONTROL TRANSMITTER

Plessey Semiconductors have developed and produced a range of monolithic integrated circuits which give a wide variety of remote control facilities. As well as ultrasonic or infra red transmission, cable, radio or telephone links may also be utilised. Pulse position modulation (PPM) is used with or without carrier and automatic error detection is also incorporated. Although initially designed with TV remote control in mind the devices may equally easily be applied for use in radios, tuners, tape and record decks, lamps and lighting, toys and models, industrial control and monitoring.

The SL490 is an easily extendable, 32 command, pulse position modulation transmitter drawing negligible standby current. It may be used with the ML920 series of remote control receivers.

FEATURES

- Ultrasonic or Infra-red Transmission
- Direct Drive for Ultransonic Transducer
- Direct Drive of Visible LED When Using Infra-red
- Very Low Power Requirements
- Pulse Position Modulation Gives Excellent Immunity From Noise and Multipath Reflections Single Pole Key Matrix
- Single Pole Key Matrix
- Switch Resistance Up To 1kΩ Tolerated
- Few External Components
- Anti-Bounce Circuitry On Chip

Fig. 1 Pin connections

QUICK REFERENCE DATA

- Power Supply: 9V, Standby 6µA, Operating 8mA
- Modulation : Pulse Position With or Without Carrier
- Coding: 5 Bit Word Giving a Primary Command Set of 32 Commands
- Key Entry: 8 × 4 Single Pole Key Matrix
- Date Rate: Selectable 1 Bit/Sec to 10k Bit/Sec.
- Carrier Frequency: Selectable OHz (no carrier) to 200KHz.

Fig. 2 SL490 transmitter block diagram

ELECTRICAL CHARACTERISTICS (see Fig.3)

$\begin{array}{l} \mbox{Test conditions (unless otherwise stated):} \\ T_{amb} = 25\,^\circ C & f_C = 40 \mbox{ kHz} \\ Vcc = +7 \mbox{ V to} + 9.5 \mbox{ V} & t_1 = 18 \mbox{ms} \end{array}$

Chavaataviatia	Value		11			
Characteristic	Pin	Min.	Түр.	Max.	Units	Conditions
Operating supply current Standby supply current Stablised voltage Output current available	4 4 17 17	4.3	8 4.6	16 30 4.9	mΑ μΑ V mΔ	Vcc = 9.5V
Output voltage swing Output current External switch resistance External switch closure time	2, 3 2, 3	1 6		Vcc 5 1	W MA kΩ ms	Unloaded Peak value
External carrier oscillator resistor required, R2 External PPM resistor R ₁ required Ratio to/t ₁ Pulse width, t _p Inter word gap, t _g Variation of t _n with V _{CC}	18 16 2, 3 2, 3 2, 3	20 15 1.4 2 50	40 30 1.5 3 54	80 60 1.6 4 58	kΩ kΩ ms ms	C2 = 680 pF $C1 = 0.68 \mu F$
t_o with V_{CC} = 9.5V t_o with V_{CC} = 7.5V Pulse width T_p Inter word gap t_g	2,3 2,3 2,3	0.96 2 50	3 54	1.04 4 58	ms ms	

Fig.3 PPM word notation

Fig. 4 Test and ultrasonic application circuit

Fig.5 Infra-red application circuit

OPERATING NOTES

Fig.5 shows the circuit for a simple infra-red transmitter where the PPM output from pin 2 of the SL490 is fed to the base of the PNP transmitter TR1, producing an amplified current pulse about 15µsec wide. This pulse is further amplified by TR2 and applied to the infra-red diodes D1 and D2.

The current in the diodes and the infra-red output is controlled by the quantity, type, and connection method of the diodes and also by the gain at high currents of the transistors.

The most common solution where cost is important is to use 2 single-chip diodes, such as the CQY99 connected in series.

Improved output can be obtained by using four CQY99 diodes in a series parallel arrangement, but it is usually simpler to use 2 multichip diodes such as the CQX47 connected in parallel or a single CQX19 which gives similar results.

A significant increase in range can be obtained by using diodes such as the CQY99 in conjunction with a plated plastic parabolic reflector.

When building the transmitter, care should be taken with the choice of the capacitor C2 and with the circuit layout, particularly when multi-chip diodes are being used, as the current pulses can be as high as 6 to 8 Amps.

Transistor choice is also important and any substitutes should have high current gain characteristics and switching speeds similar to those specified in Fig.3.

An increase in output can be obtained by connecting TR2 in common emitter configuration, but care should be taken not to exceed the rating of the diodes.

Choice of PPM Frequencies

Although the ML920 series of remote control receivers is designed to work over a wide range of PPM frequencies, the actual usable range may be restricted by the application. The analogue outputs on the ML920, ML922 and ML923 serve as a good example, since the outputs will step up or down, one step for each pair of PPM words received. This in turn fixes the rate of increment or decrement of the volume or colour controls of a TV set.

When the transmitter is being used with an infra-red link, with high current pulses fed to the diodes as in Fig.5, power consumption will increase with frequency. It is thus advisable that with a battery power supply, the slowest PPM rate consistent with adequate response time should be chosen.

Setting Up Procedure

When designing a system using the SL490/491 transmitters and the ML920 series receivers, it is not necessary to adjust the PPM rate on both transmitter and receiver. The usual arrangement is to have a fixed resistor of 33k from pin 16 of the SL490/491 and to choose the capacitor connected for pin 16 to pin 17 to give the required PPM rate. The value is calculated from the formula $t_{\rm o}$ = 1.4CR. Provided fairly close tolerance components are used for C1 and R1, then assembled transmitter units should be interchangeable without adjustment.

The timing components on the receiver can be selected using the formula

$$f_{rx} = \frac{1}{0.15CB}$$
 where $f_{rx} = \frac{40}{t_s}$

to being the PPM logic 0 time from the transmitter.

The value of R for the receiver should be between 47k and 200k, a typical arrangement being to use a 47k fixed resistor and a 100k pot as shown in Fig.6. The capacitor should be selected from the above formula to give the nominal frequency somewhere near the mid-range setting of the potentiometer.

Final adjustment is made by setting the period on the receiver oscillator time constant pin to 1/40th of the transmitter PPM logic 0 time using the potentiometer. Connection to the receiver time constant pin should be made using a x10 oscilloscope probe to reduce circuit loading.

When adjusting the ML920, the monitor output can be used for setting up, but in this case, a figure of 1/20th of the transmitter PPM logic 0 time should be used as the monitor output is at half the oscillator frequency.

1

Fig.6 Recommended receiver time constant components

Supply voltage	7V to 9.5V
Total power dissipation	600mW
Storage temperature range	-55° C to $+125^{\circ}$ C
otoruge temperature range	00 0 10 1 120 0

CONSUMER

SL 952 UHF AMPLIFIER

Г

The SL952 amplifier has been designed to drive the prescaler (SP4020, CT1110 etc) in a frequency synthesis system directly from the tuner's local oscillator.

It features a differential output to reduce local oscillator radiation, and a differential input, which may be used to couple the outputs from a VHF and a UHF tuner (see Fig. 3).

The device operates from a single 5V supply with a minimal number of external components and is encapsulated in a 14 lead DIL package.

- Low Cost
- High Gain
- Minimal External Component Count
- Good Limiting Characteristics
- 1GHz Response
- 5V Supply

ABSOLUTE MAXIMUM RATINGS

Vcc +10V Ambient temperature 0°C to +65°C Storage temperature -55°C to +125°C

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated) : Vcc = 5.0V

 $T_{AMB} = +25^{\circ}C$

	t pins DP14			
	GROUND C	6 9 7 8	p p	
	GROUND	4 0 5 10	Differential input	
	DIFFERENTIAL OUTPUT	3 12		
	d	2 13	CONNECT TO Vcc	
	d	-		

Fig. 1 Pin connections (top)

Fig. 2 Test circuit

Characteristic	Value		Unite	Conditions	
Characteristic	Min.	Тур.	Max.	Onits	Conditions
Supply voltage Supply current DC output level Output offset Maximum differential output swing Differential voltage gain Differential voltage gain Differential voltage gain	4.75 600 30 30 15	5.00 70 3.2 100 35 35 26	5.50 90 600	V mA V mVp-p dB dB dB	950MHz 100MHz 500MHz 950MHz

CONSUMER

SL 1430

TV IF PREAMPLIFIER

The SL1430 is a fixed gain IF preamplifier for television with an output optimised for driving Plessey second generation low capacitance surface acoustic wave (SAW) filters. The addition of one external capacitor allows the amplifier to drive normal capacitance SAW filters from Plessey or from other manufacturers.

The device features on chip decoupling and differerential output, requiring a minimal number of external components to be used.

FEATURES

- Low cost
- Low noise
- Low external component count
- Low distortion
- Direct 12V operation
- Can be used with different types of SAW filters

QUICK REFERENCE DATA

- 26dB gain at 40MHz
- 12V supply at 25mA
- 120mV rms. input handling

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): $\begin{array}{l} T_{amb}=+25^\circ C\\ Supply voltage=+12V\\ Frequency=40MHz \end{array}$

Output load = 7.5 pF (Pins 2 and 3) Measurements made using test circuit Fig. 2.

Fig. 1 Pin connections (top view)

Fig. 2 Test circuit

ABSOLUTE MAXIMUM RATINGS

Supply voltage Operating temperature range Storage temperature range

-0.5v to +25v -10°C to +65°C -55°C to +125°C

		Value			!	
Characteristic	Pin	Min	Тур	Max	Units	Conditions
Supply voltage	1	7	12	13.5	۷.	D: 0.00/0
Quescent current Cut-off frequency (-3dB)	5, 2/3	60	110	35	mA MHz	Pins 2, 30/C
Voltage gain	-	23	26	29	dB	Dad aslaw has
Input signal for 1% crossmodulation	5 5		75		mv mV	(wanted level 20mV unwanted modulation 65%)
Input signal for 1dB sync tip compression	5	130			mV	rms.
Input impedance	5 5		4 300Ω// 4.2pF		aB	

Fig. 3 Typical applications

SL1430 TYPICAL CHARACTERISTICS AT ,12V, $+25^{\circ}$ C, WITH SW173 AS LOAD (7.5pF) (FIGS. 5 TO 10) Unwanted signal with 65% amplitude modulation at 10KHz

Fig. 4 Cross modulation performance (see note 1)

Fig. 6 Cross modulation performance V frequency of unwanted signal (see note 1)

Fig. 8 Intermodulation performance v. supply voltage

- NOTE 1. Signal level refers to peak rms. i.e. The effective sync. tip level of a composite video signal.
- NOTE 2. The test signal employed corresponds to the red bar of a transmitted colour bar and consists of the following elements related to the sync. tip level, the vision carrier at 38.9MHz–6dB, the colour carrier at 34.5MHz–18dB, and the sound carrier at 33.4MHz–7dB.

Supply voltage	0.5V to +25V
Operating temperature range	-10°C to +65°C
Storage temperature range	55°C to +125°C

.

,

CONSUMER

SL 1431/2 TV IF PREAMPLIFIERS WITH AGC GENERATOR

The SL1431 and SL1432 are fixed gain IF preamplifiers for television with a differential output optimised for driving Plessey surface acoustic wave (SAW) filters. Besides providing the necessary gain block between the tuner and SAW filter they also supply a properly derived, broadband AGC signal to the tuner, the SL1431 providing the correct sense signal for a PNP tuner, and the SL1432 for an NPN tuner. The tuner AGC threshold is internally preset to a value to allow adequate signal handling in the SL1431 and SL1432 and does not normally require any external adjustment. However, to account for the large variations in signal handling capability which is encountered on some tuners, the tuner AGC threshold may be externally adjusted by altering the bias on pin 1.

Both devices feature on-chip decoupling for a minimum external component count.

AGC Signal

For high input signal levels the voltage on pin 7 goes low with SL1431 and high with the SL1432.

QUICK REFERENCE DATA

- 26dB Gain at 40MHz
- 12V Supply at 25mA
- 120mV R.M.S. Input Handling
- 15mA Tuner AGC Capability

Fig. 1 Pin connections

FEATURES

- Properly Derived Tuner AGC
- Low Cost
- Low Noise
- Low External Component Count
- Low Distortion
- Direct 12V Operation
- Can be used with Different Types of SAW Filters

Fig. 2 Block diagram

Fig. 3 Test circuit

SL1431/ SL1432

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): $T_{amb} = +125^{\circ}C$

 $\begin{array}{ll} I_{amb} = +125^\circ C\\ Supply voltage = +12V\\ Frequency = 40MHz\\ Output load = 7.5pF (Pins 3 and 4)\\ Measurements made using test circuit Fig. 3. \end{array}$

	Pin	Value				
Characteristic		Min.	Тур.	Max.	Units	Conditions
Supply Voltage Quiescent Current Cut-off frequency (—3dB) Voltage gain	2 2 5	7 15 60 23	12 25 110 26	13.5 33 29	V mA MHz dB	Pins o/c
Input signal for 46dB intermodulation Input signal for 1% cross-	5		120		mV	Red colour bar
modulation	5		75		mV	(wanted level 20mV, unwanted modulation 65%)
Input signal for 1dB sync tip						
compression	5	130			mVrms	
Noise figure	5		4		dB	
Input impedance	5		300Ω //4.2pF			
Tuner AGC						
Output current	7	15	20		mA	@ 10.0 V
Input impedance	1		6		kΩ	

Fig. 4 Typical applications

SL1431 TYPICAL CHARACTERISTICS AT ,12V, $+25^\circ\text{C}$, WITH SW173 AS LOAD (7.5pF) (FIGS. 5 TO 10) Unwanted signal with 65% amplitude modulation at 10KHz

Fig. 7 Cross modulation performance V frequency of unwanted signal (see note 1)

140

120

100

80

60

40

1

VISION CARRIER FOR -46dB INTERMOD see note 2

Fig. 10 Intermodulation performance (see note 2)

NOTE 1. Signal level refers to peak rms. i.e. The effective sync, tip level of a composite video signal.

NOTE 2. The test signal employed corresponds to the red bar of a transmitted colour bar and consists of the following elements related to the sync. tip level, the vision carrier at 38.9MHz–6dB, the colour carrier at 34.5MHz–18dB, and the sound carrier at 33.4MHz–7dB.

Supply voltage	0.5V to +25V
Operating temperature range	-10°C to +65°C
Storage temperature range	-55°C to +125°C

CONSUMER

SL 1440

PARALLEL SOUND AND VISION IF AMPLIFIERS AND DETECTORS

This IC is designed to operate with a two output port surface acoustic wave IF filter, one output for vision and chrominance carriers with no sound carrier, and one output for the sound carrier only.

The IC amplifies and detects the sound and vision carrier in two separate channels, the detectors being of the wide band switching type, not requiring any tuning. An AGC system is applied to the vision channel, the sound channel being made to hard limit.

Sound channel being made to hard limit. There is no facility for tuner AGC, an SL1431 should be used to provide this signal, operating before the SWAF to provide superior overload performance and needing no preset adjustment.

Fig. 2 Typical application SL1440

Fig. 3 IC block diagram.

•

CONSUMER TV CIRCUITS

SP4020 SP4021

VHF/UHF ÷ 64 PRESCALERS

The SP4020 and SP4021 are ECL divide by 64s which will operate at frequencies in excess of 950MHz, and are intended for use as prescalers in television receiver synthesiser tuners.

The SP4020 has separate inputs for VHF and UHF and the devices have a typical power dissipation of 470mW at the nominal supply voltage of +6.8V.

FEATURES

- Dual Input Ports for VHF and UHF (SP4020)
- Self-Biasing Clock Inputs
- Variable Input Hysteresis Capability for Wide Band Operation
- TTL/MOS Compatible Band Change Input (SP4020)
- Push-Pull TTL O/P

OPERATING NOTES

Two input ports are available on the SP4020. Switching between these inputs is accomplished by operation of the band change input. A logic '1' activates the UHF input, logic '0' the VHF input. When an input is not in use the input signal must be removed to prevent cross-modulation occuring at high frequencies. Both inputs are terminated by a nominal 400 Ω and should be AC coupled to their respective signal sources. Input power to the device is terminated to ground by the two decoupling capacitors on the reference pins. Input coupling and reference decoupling capacitors should be of a type suitable for use at a frequency of 1GHz.

When the device is switched to the VHF input, an input hysteresis of 50mV is set by the internal band change circuit. This improves the low frequency sine-wave operation of the device. The hysteresis level may be measured as $V_{RF1} - V_{RF2}$

If the SP4021 is required to operate with a sinewave input below 100MHz, then the required hysteresis may be applied externally as shown in Fig. 5. Large values of hysteresis should be avoided as this will degrade the input sensitivity of the device at the maximum frequency. The divide by 64 output is designed to interface with TL which has a common V_{EE} (ground). At low frequency the output will change when one of the clock change inputs changes from a low to a high level. Self oscillation may result if the input signal falls below the minimum specified.

The devices may be operated down to very low frequencies if a square wave input with an edge speed greater than $200V/\mu s$ is used.

Fig. 1 Pin connections

Unly one generator should be connected to either the VHF or UHF inputs. The input not in use may be left open circuit. All capacitors are 1nF unless otherwise stated.

Fig. 3 AC test circuit
SP4020/SP4021

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): Supply voltage VEE = oV, Vcc = +6.45V to +7.15VClock input voltage sinusoidal TA: $+25^{\circ}C$ Pin 14 O/P

Characteristic	Pin	Value			Units	Conditions
		Min.	Тур.	Max.	01110	Conditions
Supply voltage	1,2	6.45	6.80	7.15	v	
Supply current	1,2	40	68	90	mA	Vcc = 6.8V
Output level high	4	2.5	3.5	5.0	V	—1mA
Output level low	4		0.3	0.5	{ V	5mA
Band change input (SP4020 only)						See Note 1
High level	14	2.5			V	For UHF input
Low level	14			0.4	V	For VHF input
Low level I/P current	14			0.8	mA	@ 0.4V
Max. clamp current	14	-3			mA	@0.7V
Sensitivity					}	
SP4020:-						
VHF I/P 100MHz	8		100	300	mVp-p	Pin 14 to 0V
VHF I/P 300MHz			50	300	mVpp	Pin 14 to 0V
UHF I/P 500-800MHz	10		100	300	mVpp	
UHF I/P 950MHz			50	300	mVp-p	See Note 2
SP4021 :-						
I/P 100MHz	10		120	400	mVpp	
I/P 300–800MHz			100	300	mVp-p	
I/P 950MHz			50	300	mVpp	See Note 2
Overload level						
SP4020:-						
VHF I/P 100–300MHz	8	0.9	2.0		Vp-p	
0HF I/P 100–950MHz	10	0.9	2.0		∨р–р	Pin 14 to 0V
SP4021 :-	10					
1/P 100-300MHz	10	1.0	2.0		Vp-p	
1/P 500–950MHz	10	0.9	2.0		vp-p	

Note 1 TTL type including negative input voltage clamp

Note 2 This is measured with the device in a low profile socket; soldered results show, typically, a 25% improvement.

Fig. 4 Application circuit

SP4020/SP4021

Fig. 5 Wideband operation

ABSOLUTE MAXIMUM RATINGS

Power supply voltage Vcd	c - VEE OV to +10V
Input voltage, clock input	ts 2.5V p–p
Band change input	
(SP4020)	+7.2 to -0.5V or -10mA
Output current	+30mA to30mA
Operating temperature	0°C to +65°C
Storage temperature	55°C to +125°C

Fig. 6 SP4020 typical sensitivity with limits of operation when used in application circuit (Fig. 4)

Fig. 7 SP4021 Typical sensitivity with limits of operation when used in application circuit (Fig. 4) with pin 14 open circuit.

182

.

CONSUMER TV CIRCUITS

SP4040 SP4041

VHF/UHF ÷ 256 PRESCALERS

The SP4040 and SP4041 are ECL divide by 256 which will operate at frequencies in excess of 950MHz, and are intended for use as prescalers in television receiver synthesiser tuners.

The SP4040 has separate inputs for VHF and UHF and the devices have a typical power dissipation of 500mW at the nominal supply voltage of +6.8V.

FEATURES

- Dual Input Ports for VHF and UHF (SP4040)
- Self-Biasing Clock Inputs
- Variable Input Hysteresis Capability for Wide Band Operation
- TTL/MOS Compatible Band Change Input (SP4040)
- Push-Pull TTL O/P

OPERATING NOTES

Two input ports are available on the SP4040. Switching between these inputs is accomplished by operation of the band change input. A logic '1' activates the UHF input, logic '0' the VHF input. When an input is not in use the input signal must be removed to prevent cross-modulation occuring at high frequencies. Both inputs are terminated by a nominal 400 Ω and should be AC coupled to their respective signal sources. Input power to the device is terminated to ground by the two decoupling capacitors on the reference pins. Input coupling and reference decoupling capacitors should be of a type suitable for use at a frequency of 1GHz.

When the device is switched to the VHF input, an input hysteresis of 50mV is set by the internal band change circuit. This improves the low frequency sine-wave operation of the device. The hysteresis level may be measured as $V_{RF1} - V_{RF2}$

If the SP4041 is required to operate with a sinewave input below 100MHz, then the required hysteresis may be applied externally as shown in Fig. 5. Large values of hysteresis should be avoided as this will degrade the input sensitivity of the device at the maximum frequency. The divide by 64 output is designed to interface with TTL which has a common VEE (ground). At low frequency the output will change when one of the clock change inputs changes from a low to a high level. Self oscillation may result if the input signal falls below the minimum specified.

The devices may be operated down to very low frequencies if a square wave input with an edge speed greater than $200V/\mu s$ is used.

Fig. 1 Pin connections

Fig. 2 Equivalent small signal input impedance (80MHz-1GHz)

Fig. 3 AC test circuit

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): Supply voltage VEE = oV, Vcc = +6.45V to +7.15VClock input voltage sinusoidal TA: $+25^{\circ}$ C Pin 14 O/P

Ohanastariatia	D:		Value		Unite	Conditions
Characteristic	Pin	Min.	Тур.	Max.	Units	Conditions
Supply voltage Supply current	1,2 1,2	6.45 50	6.80 70	7.15 95	V mA	$V_{cc} = 7.15V$
High Low	4 4	2.5	3.5 0.3	5.0 0.5	v v	—1mA 5mA
High level Low level Low level I/P current Max. clamp current	14 14 14 14	2.5 —3		0.4 0.8	V V mA mA	For UHF input For VHF input @ 0.4V @ -0.7V
Sensitivity SP4040:- VHF I/P 100MHz 300MHz UHF I/P 500-800MHz 950MHz SP4041:- 100MHz 200MHz 300MHz 500-700MHz 800MHz 950MHz	8 10 10 10 10 10 10 10 10		120 100 250 400 300 150 100 200 400	300 300 440 550 400 350 300 400 700	mVp-p mVp-p mVp-p mVp-p mVp-p mVp-p mVp-p mVp-p mVp-p mVp-p	Pin 14 to OV Pin 14 to OV Note 1 Note 1
Overload level SP4040:- VHF I/P 100-300MHz UHF I/P 500-600MHz SP1041:-	8 10	1.0 1.0	2.0 2.0		Vp-p Vp-p	Pin 14 to 0V
300MHz 300MHz 500–600MHz 950MHz	10 10 10 10	1.2 1.0 1.0 1.2	2.0 2.0 2.0 2.5		vp-р Vp-р Vp-р Vp-р	

Note 1. This is measured with the device in a low profile socket; soldered in results show typically a 25% improvement.

Fig. 4 Application circuit

Capacitors are 1nF unless otherwise stated. Values should be increased if operation below 10MHz is required.

For 50mV hysteresis R1 = 36k Ω R2 = ∞ For 100mV hysteresis R1 = 18k Ω R2 = 18k Ω

ABSOLUTE MAXIMUM RATINGS

Power supply voltage Vc	c - Vee OV to +10V
Input voltage, clock input	ts 2.5V p-p
Band change input	
(SP4040)	+7.2 to -0.5V or -10mA
Output current	+30mA to30mA
Operating temperature	0°C to +65°C
Storage temperature	-55°C to +125°C

Fig. 6 SP4040 typical sensitivity with limits of operation when used in application circuit (Fig. 4)

CONSUMER TV FILTERS

SW150 SW153 SW170 SW173 SW200 SW250 SW400 SW450

SURFACE ACOUSTIC WAVE COLOUR TV IF FILTERS

This comprehensive range of TV IF filters utilises Plessey Surface Acoustic Wave technology and is suitable for use in colour or monochrome television receivers world wide. The frequency pass-band and phase response of each of these highly stable devices are tailored to the relative transmission standard. The devices require no adjustment and are packaged in a totally hermetic Metal/Glass TO8 package.

Fig. 1 Pin connections (viewed from beneath)

FEATURES

- No Adjustment Necessary
- Low Cost
- Compact Dimensions
- High Stability
- High Reliability
- Comprehensive Range of Standards Available

APPLICATION NOTES

The input drive and output load circuitry should provide a low impedance across at least one device port to minimise spurious signals due to secondary device characteristics. Fig. 2 shows a typical application, the SL1430 providing a very low drive impedance. The 330 Ω load resistor is included to ensure stability of the TDA2540 and may be omitted in some designs that do not use this device.

Care must be taken with the printed circuit board layout, and the use of balanced input and output is advised to ensure low levels of direct breakthrough. The device must also be mounted with minimum lead length. Application introduced direct breakthrough will exhibit itself as a deterioration in amplitude and group delay ripple, and a screen image approximately 1.5µs before the main response.

Fig. 2 Typical application

Fig. 3 Test circuit

Fig. 4 Amplitude characteristics

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise	e stated) :-
Ambient temperature	+35°C
Input drive impedance	50 Ω
Load impedance	300 Ω balanced

The amplitude level at the vision carrier frequency is taken to be -6dB and is then used as a reference for all other relevant measurements (see Fig. 4).

The insertion loss is defined as the voltage ratio $V_{\text{IN}}/V_{\text{OUT}}$ in the test circuit (Fig. 3) and is expressed in dB.

The amplitude characteristics given in the Electrical Characteristic tables are defined in Fig. 4. The response in the Nyquist region is guaranteed by the measurement of the $2T \sin^2$ pulse and bar K rating after synchronous demodulation.

In band amplitude and group delay ripple is defined as the worst deviation from the mean over any 500Khz bandwidth between the two defined in-band frequency limits.

The measurement of spurious outputs includes those due to internal reflections and direct breakthrough, a 2T Sin² pulse being used and measurements being made between 2 and 1 μ s before, and 1 and 4 μ s after, the centre of the main response.

SW150

The SW150 is a TV IF filter for the United Kingdom PAL standard, system I, with a vision carrier frequency of 39.5MHz.

Characteristic	Frequency	Value		Value		Value		Ilaita	Conditions
Characteristic	MHz	Min.	Тур.	Max.	Units	Conditions			
Vision carrier Colour carrier Sound carrier Sound shelf deviation In-band level In band spot In-band ripple Adjacent vision trap Adjacent sound trap Lower side lobe Upper side lobe Upper side lobe Insertion loss 2T sin ² pulse and bar K rating Group delay:- Ripple Deviation Spurious outputs Temperature coefficient of frequency Small signal impedances Input pins 2 & 4	$\begin{array}{c} 39.5\\ 35.1\\ 33.5\\ 33.2-33.8\\ 36-38\\ 38\\ 35.5\\ 36-38\\ 31.5\\ 41.5\\ 26.5-31.5\\ 41.5\\ 26.5-31.5\\ 41.5-46.5\\ 46.5-100\\ 38.0\\ 39.5\\ 36.0-39\\ 34.5-40.5\\ 39.5\\ \end{array}$	Re -7 -27 -3 -2 0 -45 -42 -38 -36	f, level -3 -24 ±3 0 -2 0.5 -55 -55 -55 -55 -42 -30 17 1.5 5 10 -46 -90 1kΩ// 10pF 1.6kΩ// 10pF	$ \begin{array}{c} -6 \\ 0 \\ -21 \\ 2 \\ 1.5 \\ -4 \\ 1 \end{array} $ 10 40 -40	dB dB dB dB dB dB dB dB dB dB dB dB dB d	w.r.t. level at 38MHz Peak			

SW153

The SW153 is a TV IF filter for the United Kingdom PAL standard, system 1, with a vision carrier frequency of 39.5MHz.

Characteristic	Frequency	Value		Unita	Conditions	
Characteristic	MHz	Min.	Тур.	Max.	Units	Conditions
Vision carrier Colour carrier Sound carrier Sound carrier Sound shelf deviation In-band level In band spot In-band ripple Adjacent vision trap Adjacent sound trap Lower side lobe Upper side lobe Upper side lobe Insertion loss 2T sin ² pulse and bar K rating Group delay:- Ripple Deviation Spurious outputs Temperature coefficient of frequency Small signal impedances Input pins 2 & 4	$\begin{array}{c} 39.5\\ 35.1\\ 33.5\\ 33.2-33.8\\ 36-38\\ 38\\ 35.5\\ 36-38\\ 31.5\\ 41.5\\ 26.5-31.5\\ 41.5-46.5\\ 46.5-100\\ 38.0\\ 39.5\\ 36.0-39.0\\ 34.5-40.5\\ 39.5\\ \end{array}$	Re -6 -25 -2 -1.5 0 -45 -40 -36	1.5 μevel - -3 -22 ±1 0 0 -1 0.5 -55 -50 -42 -30 21 1.5 5 10 -46 -90 1.8k Ω// 100 1.6k Ω//	$ \begin{array}{c} -6\\ 0\\ -19\\ \pm 3\\ 2\\ 1.5\\ -2\\ 1\\ 25\\ 2\\ 10\\ 40\\ -40\\ \end{array} $	dB dB dB dB dB dB dB dB dB dB dB dB dB d	w.r.t. level at 38MHz Peak

SW170

The SW170 is a TV IF filter for the European PAL standard, systems B and G, with a vision carrier frequency of 38.9MHz.

Characteristic	Frequency		Value		Value		Unito	Conditions
	MHz	Min.	Тур.	Max.	Units	conutions		
Vision carrier Colour carrier Sound carrier Sound shelf deviation In-band level In band spot In-band slope In-band ripple Adjacent vision trap	38.9 34.5 33.4 33.1–33.5 35.5–37.4 37.4 35.5 35.5–37.4	Re 7.5 27 3 1.5 0.5	ef. level - 4 -22 ±3 0 0 -2 0.5	-6 -2.5. -18 2 1.5 -3 1	dB dB dB dB dB dB dB dB	w.r.t. level at 37.4MHz Peak		
VHF UHF	30.9 31.9	36 38	-40 -45		dB dB			
UHF VHF	40.4 41.4	38 36	45 40		dB dB			
Lower side lobe Upper side lobe	27.5–31.9 40.4–45 45–100	35 35	-40 -40 -20		dB dB dB			
Insertion loss 2T sin ² pulse and bar K rating Group delay:-	37.4 38.9		18 2	24 3	dB %			
Ripple Deviation	36–38 34.5 35.15 36.9		25 170 0 90		ns ns ns ns	Peak Reference 0 @ 38.9MHz Reference 0 @ 38.9MHz Reference 0 @ 38.9MHz		
Spurious outputs Temperature coefficient of frequency Small signal impedances	38.9		-46 -90	-40	dB ppm/°C			
Input pins 2 & 4 Output pins 1 & 5			1κΩ// 12pF 1.6kΩ// 10pF					

SW173

The SW173 is a TV IF filter for the European PAL standard, systems B and G, with a vision frequency of 38.9

		value		Units	Conditions
MHz	Min.	Тур.	Max.		
38.9 34.5 33.4 33.1-33.5 35.5-37.4 37.4 35.5 35.5-37.4 30.9 31.9	-5 -23 -2 -1 0 -40 -43	f. level 3.5 20 +4/-1 0 1.5 0.75 43 48	-6 -2 +6/-3 1 -2.5 1 1.5	dB dB dB dB dB dB dB dB dB dB dB	wrt level at 37.4MHz Peak
40.4 41.4	43 40	-48 -43		dB dB	
40.4-45 45-100 37.4	36 37	40 42 30 22	26	dB dB dB dB	
38.9 36-38 34.1 34.5 35.15 36.9 37.9 39.9		2 25 400 170 0 53 53	3 50	% ns ns ns ns ns ns ns	Peak Reference 0 @ 38.9MHz Reference 0 @ 38.9MHz
38.9		46 90 1.6kΩ// 8pF 1.8kΩ//	-40	dB ppm/°C	
	MHz 38.9 34.5 33.4 33.1–33.5 35.5–37.4 35.5 35.5–37.4 30.9 31.9 40.4 41.4 27.5–31.9 40.4–45 45–100 37.4 38.9 36–38 34.1 34.5 35.15 35.9 36–38 34.1 34.5 35.9 38.9 38.9	MHz Min. 38.9 -5 33.4 -5 33.1-33.5 35.5-37.4 35.5 0 35.5-37.4 -2 31.9 -40 31.9 -43 40.4 -43 41.4 -40 27.5-31.9 -36 40.4-45 -37 45-100 37.4 38.9 36-38 34.1 34.5 35.15 36.9 37.9 39.9 38.9 38.9	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

SW200

The SW200 is a TV IF filter for the North American NTSC standard, systems M and N, with a vision carrier frequency of 45.75MHz.

Characteristics	Frequency	Value		Value		Unite	Conditions
Characteristics	MHz	Min.	Тур.	Max.	Units	Conditions	
Vision carrier Colour carrier Sound carrier In-band level In-band ripple Adjacent sound trap Lower side lobe Upper side lobe Insertion loss 2T sin ² pulse and bar K rating Group delay:- Ripple Deviation	45.75 42.17 41.25 43-44.25 43-44.25 39.75 47.5 35-39.75 47.5-52.5 43-44.25 42-46	Re -7 -24 -3 -40 -35 -35 -30	ef. level -4 -20 0.5 -50 -45 -40 -36 19 2 10 50	-6 0 -16 3 1.5 25 3	dB dB dB dB dB dB dB dB dB dB dB dB ns ns	Peak	
Spurious outputs Temperature coefficient of frequency Small signal impedances Input pins 2 & 4 Output pins 1 & 5	45.75		44 90 1kΩ// 13pF 1.5kΩ// 11pF	-38	dB ppm/°C		

SW250

The SW250 is a TV IF filter for the French SECAM standard, systems L and L', with a vision carrier frequency of 32.7MHz.

Characteristic	Frequency		Value		Units	Conditions
	MHz	Min.	Тур.	Max.		
Vision carrier Colour carrier region In-band level In-band ripple Adjacent vision trap Adjacent sound trap Own sound UHF	32.7 37 38 34.5–36 34.5–36 40.7 31.2 39.2_	-2 -3 -2 -3 -46 -46	ef. level - 06 0.5 43 50 46	-6 1 -9 2 1	dB dB dB dB dB dB dB dB	Peak
VHF Lower side lobe Upper side lobe Insertion loss 2T sin ² pulse and bar K rating Group delay:- Ripple Deviation	43.85 26-31.2 39.2-40.7 40.7-45 45-90 34.5 32.7 34.5-36 34.5-36	43 36 38 36	-46 -40 -43 -40 -30 19 2 10	25 3	dB dB dB dB dB dB % ns	
Spurious outputs Temperature coefficient of frequency Small signal impedance Input pins 2 & 4 Output pins 1 & 5	32.7		46 90 1.6k Ω// 10pF 1.2k Ω// 11pF	-40	dB ppm/°C	

SW400

The SW400 is a TV IF filter for the Australian PAL standard, systems B and G, with a vision carrier frequency of 36.875MHz.

Characteristic	Frequency	Value			Value			Units	Conditions
	MHz	Min.	Тур.	Max.	onits	Conditions			
Vision carrier Colour carrier Sound carrier	36.875 32.445 31.375 33.475	_Re —7 —26	ef. level - 	-6 -1 -18	dB dB dB				
In band ripple	35.375 33.475– 35.375	3	0 0.5	2 1.5	dB dB	Peak			
Adjacent vision trap VHF UHF	28.875 29.875	36 38	-40 45		dB dB				
Adjacent sound trap VHF UHF	28.375 39.375	38 36	-45 -40		dB dB				
Lower side lobe	25.0 29.875	35	-40		dB				
Upper side lobe	38.375– 43.0	35	-40		dB				
Insertion loss 2T sin² pulse and bar K rating Group delay	35.375 36.875		18 2	24 3	dB %				
Ripple Deviation	32.5–35.375 32.445 34.125 34.875		25 175 0 80		ns ns ns ns	Reference 0 @ 36.875MHz			
Spurious outputs Temperature coefficient of frequency Small signal impedances	36.875		-46 -90	-40	dB ppm/°C				
Input pins 2 & 4 Output pins 1 & 5			1κΩ// 12pF 1.6kΩ// 10pF	1					

191

SW450

The SW450 is a TV IF filter for the South African PAL standard, system 1, with a vision carrier frequency of 38.9MHz.

Characteristic	Frequency		Value			Conditions
	MHz	Min.	Тур.	Max.	Onits	conditions
Vision carrier Colour carrier Sound carrier In-band level In-band ripple Adjacent vision trap Adjacent sound trap Lower side lobe Upper side lobe Insertion loss 2T sin ² pulse and bar K rating Group delay:- Ripple Deviation Spurious outputs Temperature coefficient of frequency Small signal impedances Input pins 2 & 4 Output pins 1 & 5	38.9 34.47 32.9 35.5–37.4 35.5–37.4 30.9 40.9 25.8–30.9 40.9–46 37.4 38.9 35.5–37.4 35.5–37.4 38.9	Re -7 -34 -3 -38 -38 -36 -36	fr. level – –4 –30 0 0.5 –46 –43 –40 –40 17 1.5 10 25 –46 –90 1kΩ// 12pF 1.6kΩ// 10pF	-6 0 -26 2 1.5 23 2 50 -40	dB dB dB dB dB dB dB dB dB dB dB dB dB d	Peak

ABSOLUTE MAXIMUM RATINGS

-25°C to +85°C -10°C to +70°C 30V (short term) 10V (continuous) 100V Storage temperature Operating temperature Pin to pin voltage

Pin to case voltage

194

195

CONSUMER TV CIRCUITS

TBA120S

LIMITING IF AMPLIFIER/FM DETECTOR

The TBA120S is a symmetrical 8-stage limiting amplifier with a symmetrical coincidence demodulator and remote DC volume control. The circuit is especially suited for the sound IF section of TV receivers and for FM/IF amplification/demodulation in FM radio receivers.

An auxiliary circuit, consisting of a transistor with free base and collector and a 12V Zener diode, is also incorporated on the chip. The transistor can be used as an AF preamplifier ($I_C < 5mA$) or as a bass/treble switch using voltage-controlled on/off switching of an R-C circuit.

The Zener diode can be used to stabilize the chip supply voltage or that of other circuits in the system ($I_Z < 15$ mA).

The TBA120S is supplied in two group variants, with volume as the parameter. A decrease in volume of 30 dB requires a resistor between pin 5 and earth with a value depending on the group number as shown in the following table. The group number is printed on the package.

Group	111	IV
$R_5(k\Omega)$	2.1-2.5	2.4-2.9

Fig. 2 SBA120S block diagram

Fig. 1 Pin connections

FEATURES

- Outstanding Limiting Qualities
- High AM Suppression
- Wide Supply Voltage Range
- Low External Component Count

APPLICATIONS

- TV Sound Systems
- FM Radio Receivers
- FM Tuners

QUICK REFERENCE DATA

- Supply Voltage: +12V (Typ.)
- Operating Frequency: Up to 12MHz
- Current Consumption: 14mA (Typ.)
- IF Voltage Gain: 68dB (Typ.)
- AF Output Voltage: 1.1V r.m.s. (Typ.)
- Volume Control Range: 70dB (Typ.)
- Second Source Availability

TBA120S

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

V_{CC} = +12V T_A = +25°C f = 5.5MHz $\Delta f = \pm 50 kHz$ f_{mod} = 1kHz

Ohana adamianta	0	Value				0.114
Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
Amplifier/demodulator						
Frequency range	f	0		12	MHz	
IF voltage gain V ₆ /V ₁₄	Gv		68		dB	
IF output voltage	Vopp		250		mV	Limiting each output
AF output voltage	VAF		1.1		V r.m.s.	V _i =10mV, Q=45, K=4%
			0.55		V r.m.s.	V _i =10mV, Q=20, K=1%
Input voltage at start of limiting	Vlim		30	60	μV	Q=45
Input impedance	Zi	15/6	40/4.5		kΩ/pF	
Output resistance (pin 8)	Ro		2.6		kΩ	
Volume control range	VAFmax		70		dB	
	VAFmin					
DC component of o/p signal	V ₈		7.3		v	V _i =0
AM suppression	aAM	45	55		dB	V _i =500µV, m=30%
Potentionmeter resistance	R ₅					
–1dB down	_		3.7	4.7	kΩ	
-70dB down		1.0	1.4		kΩ	[
Control voltage	V5					
-1dB down			2.4	2.6	v	
-70dB down			1.3		v	
Total current requirement	· Icc	10	14	18	mA	R ₅ = ∞
		12	16	20	⁺mA	R ₅ = 0
Auxiliary circuit						
Zener voltage	V12	12.5	13.5	14.5	v	l ₁₂ = 5mA
Zener resistance	R,		30		Ω	
Transistor breakdown voltage	BVCEO	13			v	14=0, 13=500µA
Current gain	hFF	30			_	la=1mA
-					1	l ^v

Zener current, I12

Continuous:

15mA 20mA

4V

5mA

2mA

≤1kΩ

ABSOLUTE MAXIMUM RATINGS ิปเ

		Max. 1 min:
Supply voltage V _{CC} :	18V	Volume control voltage, V ₅ :
Operating temperature	–10°C to +70°C	Collector current, I3:
Storage temperature	–25°C to +125°C	Current I4:
Total power dissipation, Ptot		Shunt resistance R13/14:
Continous:	400mW	
Max. 1 min:	500mW	

TBA120S

Fig. 5 Audio output v. supply voltage

Fig. 6 Distortion factor (k) as a function of audio output voltage VAF

INPUT VOLTAGE Vi (mV)

Fig. 8 Recommended application circuit, 5.5MHz

Fig. 10 Circuit diagram

CONSUMER TV CIRCUITS

TBA 120T TBA 120U

FM IF AMPLIFIER AND DEMODULATOR

The TBA120T and TBA120U are symmetrical 8-stage limiting amplifiers with symmetrical coincidence demodulator and remote DC volume control. The circuits are especially suitable for the sound IF section of TV receivers and for FM/IF amplification/demodulation in FM radio receivers. An additional audio output is provided at constant level (before the volume control) for the connection of video recorders and headphones, together with an audio input for video recorder playback.

The audio output voltage is at constant level with supply voltages between 10 and 18V and is of the same level as the TBA120S operating from a 15V supply.

The devices are insensitive to supply voltage hum, and there is therefore little need for smoothing capacitors.

FEATURES

- Outstanding Limiting Qualitites
- High AM Suppression
- Wide Supply Voltage Range
- Low External Component Count
- Low Intermodulation due to IF Voltage
- No Selection for Volume Control Characteristic Necessary
- Designed for use with Ceramic Filters (TBA120T only)

Fig. 1 Pin connections

APPLICATIONS

- TV Sound Systems
- FM Radio Receivers
- FM Tuners

Fig. 2 Block diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

V_{CC} = 12V T_{amb} = +25°C

	0	Value			11	0
Characteristic	Symbol	Min.	Тур.	Max.	Units	Congitions
Total current consumption	lcc	9.5	13.5	17.5	mA	
IF voltage gain V ₆ /V ₁₄	Gv		68		dB	f _{IF} = 5.5 MHz
Output voltage with limiting at each						
output			250		mVp-p	
Output impedance Pin 8	R ₈		-1.1		kΩ	
Pin 12	R ₁₂		1.1		kΩ	
Input impedance	R ₃		2		kΩ	
Internal impedance	R ₄		12		Ω	
DC level of output signal (V _{in} = 0)	V ₈		4		v	V _{in} = 0
	V ₁₂		5.6		v	
Stabilized voltage	V4	4.2	4.8	5.3	v	
Residual IF voltage without deemphasis	V8		20		mV	
	V ₁₂		30		mV	
AF gain (AF not regulated)	V_8/V_3		7.5			
Regulation at certain ratio of divider	VAF/8	20	28	36	dB	$R_{4-5} = 5k\Omega, R_{5-1} = 13k\Omega$
Range of volume control	VAFmax	70	85		dB	
(referred to pin 8)	VAFmin	,,,			40	
Resistance (see note 1)	R ₄₋₅	1		10	kΩ	
Input voltage for limitation	V _{inlim}		30	60	μV	f _{IF} = 5.5 MHz, ∆f = ± 50kHz, f _{mod} = 1kHz
Hum suppression	V_{8}/V_{11}		35		dB	
	V_{12}/V_{11}		30		dB	
TBA 120T only:						
Input impedance	Z _{in}		800//5		Ω//pF	f _{IF} = 5.5 Mhz
AM suppression	адм	50	60		dB	$f_{1F} = 5.5 \text{ MHz}, \Delta f = \pm 50 \text{ kHz},$
ו •						V _{in} = 500µV, f _{mod} = 1kHz, m = 30%
AF output voltage	V _a 、	650	900		mV	f _{1F} = 5.5 MHz, ∆f = ±50kHz,
·	V ₁₂	400	650		mV	f _{mod} = 1kHz
TBA 120U only:						
Input impedance	Zin	15//6	40//4.5		kΩ//pf	f _{IF} = 5.5 MHz
AM suppression	^a AM	50	60		dB	$f_{IF} = 5.5 MHz, \Delta f = \pm 50 kHz,$
						V _{in} = 500µV, f _{mod} = 1kHz, m = 30%
AF output voltage	V _{8eff}	850	1200		mV	$f_{1F} = 5.5 \text{ MHz}, \Delta f = \pm 50 \text{ kHz},$
	V _{12eff}	600	1000		mV	$ V_{in} = 500\mu V$, $J_{mod} = 1KHZ$, $ Q_8 \approx 45, k = 4\%$
Harmonic distortion	k		1		%	$f_{1F} = 5.5 \text{ MHz}, \Delta f = \pm 50 \text{ Hz},$
				-		$V_{in} = 10 \text{mV}, f_{mod} = 1 \text{kHz},$ $Q_8 \approx 20$

NOTE 1. If DC volume control is not used, pin 4 must be connected direct to pin 5.

ABSOLUTE MAXIMUM RATINGS

Supply voltage V _{CC}	18V	Reference voltage O/P current, I ₄	5mA
Operating ambient temperature, Tamb	–10 to +65°C	IF input resistance, R ₁₃₋₁₄ (TBA120U)	≤1kΩ
Storage temperature, Tstg	–55 to +125°C	Range of supply operation, V _{CC}	10 to 18V
Total power dissipation, Ptot	400mW	Frequency range, f	0 to 12 MHz
Volume control voltage, V ₅	6V		

TBA120T/TBA120U

Fig. 3 Recommended application circuit

Fig. 7 AF output voltage and noise voltage v. input voltage (input Murata SFE 5.5MB)

Fig. 8 AF output voltage and noise voltage v. input voltage (input 60 Ω impedance, broadband)

TBA120T/TBA120U

Fig. 9 AF output voltage (pin 8), noise voltage and harmonic distortion v. input voltage.

Fig. 11 AF output voltage (pin 8) v. potentlometer resistance and v. ratio of resistances

Fig. 10 Harmonic distortion v. volume control

Fig. 12 AF output voltage (pin 8) v. voltage feeding into pin 5 VIRF = 60mVeff, ∫IF = 5.5 MHz, ∆f = ±50kHz, ∫mod = 1kHz, V_{CC} = 18V

Function:

When switching voltage applied, the emitter follower (BC238) on the output is blocked and the buffer stage (BC308) is switched on. It includes a pre-emphasis to balance the de-emphasis at the AF output. The IF amplifier is put out of operation by the diode, BA127, and the 47k\Omega resistor. The remote controllable volume regulator in the TBA120T/U is used for recording and playback.

SOCKET (1): SWITCHING VOLTAGE:FOR PLAYBACK +12 V FOR INPUT NC SOCKET (4) SIMULTANEOUS INPUT AND OUTPUT FOR AF

Fig. 13 Circuit for direct connection to video recorders

TBA 440 N/P

VIDEO IF AMPLIFIER DEMODULATOR

The TBA440 (TBA440N for NPN tuners, TBA440P for PNP tuners) comprises a high-gain regulated video IF amplifier, a controlled demodulator and two low-resistance video outputs with positive and negative signal as well as the complete key control and delayed tuner control.

ABSOLUTE MAXIMUM RATINGS

Supply voltage steady	15V
transitory	16.5V
Voltage at pin 5	20∨
Voltage at pin 4	5V
Voltage at pin 14	5V
Operating ambient temperature	-10° to +60°C
Total power dissipation	
at T _{amb} ≤ 55°C	700mW
Ohmic resistance between pins 8 and 9	20 Ω

FEATURES

- Complete Video IF in one IC
- High Sensitivity
- Positive and Negative Video Signals
- Gated AGC and Delayed AGC for Tuner
- White and Black Levels Separately Adjustable
- Ability to Control PIN Diode Attenuators

Fig. 2 TBA440 block diagram

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

 $T_{amb} = +25^{\circ}C$ $V_{CC} = +13V$

Reference point is pin 3 (0V)

Characteristic	Pin		Value		Unite	Conditione
		Min.	Тур.	Max.		Conditions
Supply voltage, V _{CC}	13	10.5	13	15	v	
Current consumption	13	28	40	52	mA	V _{CC} = 15V
DC output voltage	11	4.1	5.1	6.1	v	V _{in} = 0V, R ₁₄ = ∞
	11		6.2		v	$V_{in} = 0V, R_{14} = 0$
	12	05	1.1	1.8	v	V _{in} = 0V, R ₁₄ = ∞
	12		2.5		v	$V_{in} = 0V, R_{14} = 0$
White level deviation					i	
$\Delta V_{11} / \Delta V_{13}$	11, 13		0.15			
$\Delta V_{12} / \Delta V_{13}$	12, 13		0.05			
Resistance R_{14-3} for $\Delta V_{11} = 1V$	14 3		1		kΩ	
AGC threshold V ₁₀ = sync pulse						
level for $R_{10-11} = 0$	10,11		1.2		V.	$V_{10} = V_{11}$
Regulating slope R ₁₀₋₁₁ /V ₁₁	10, 11		4.5		kΩ/V	
Sync. pulse level with async. or						
without gating pulses	11		0.2		V	
Control current for tuner pre antp.	5	10	15		mA	$V_5 > 2V$, 10dB after AGC (TBA440P) 10dB before AGC (TBA440N)
IF control voltage for max gain	4	0		0.5	V	
for min gain	4	2.5		5	V	
Gating pulse voltage	7	-2		-5	v ،	· · · · · ·
Residual IF voltage	11, 12		50		mV	
Output current to earth	11, 12			5	mA	
Output current to V ₁₃	11, 12			1	mA	
Input impedance at max gain	1		1.8//2		kΩ∥pF	
Input voltage for $V_{ex} = 3V_{ex}$	1		1.9//0		к <i>ъс</i> «рг	Input 600 via 215 transformer
Video bandwidth			7		μν ΜΗ-	input 0042 via 3.5 transformer
		52	59			
Intermodulation		52	56		dB	Input 0.2 to 1.5V p.p.
intermodulation			55		uв	mput 0.5 to 1,5v p-p

Fig. 3 Noise figure v. attenuation (measured at video frequency)

Fig. 4 Control voltage v. attenuation

Fig. 5 Tuner control current v. attenuation with R₆ as parameter (TBA440P)

Fig. 6 Tuner control current v. attenuation with R₆ as parameter (TBA440N)

Fig. 7 IF application with TBA440P or TBA440N for CCIR standard (values in brackets for U.S. standard)

CONSUMER TV CIRCUITS

TBA530

RGB MATRIX PRE-AMPLIFIER

The TBA530 is an integrated R-G-B matrix pre-amplifier for colour television receivers incorporating a matrix pre-amplifier for R-G-B cathode or grid drive of the picture tube without clamping circuits. The chip layout has been designed to ensure tight thermal coupling between all transistors in each channel to minimise thermal drifts between channels. Also, each channel follows an identical layout to ensure equal frequency behaviour of the three channels.

This integrated circuit has been designed to be driven from the TBA520 synchronous demodulator integrated circuit.

ABSOLUTE MAXIMUM RATINGS

Supply voltage, V _{CC}	13.2V
Supply currents:-	
$I_1 = I_{11} = I_{14} \max$	10mA
$I_{10} = I_{13} = I_{16} max$	50mA*
Total power dissipation	
at $T_{amb} = 60^{\circ}C, P_{TOT}$	400mW*
Storage temperature	–55 to +125°C
Operating ambient temperature	–10 to +60°C

At increased voltages due to external failures (e.g., collector-base breakdown in the output transistors) a maximum current of 50mA is permitted between pins 16 and 8, 13 and 8, 10 and 8. The maximum permissible power dissipation is then 500mW.

Fig. 1 Pin connections

QUICK REFERENCE DATA

Supply Voltage (Nominal)	12V
Total Supply Current (Nominal)	30mA
Operating Ambient Temperature Range	-10 to +60°C
Gain of Luminance and Colour-difference Channels (Tvp.)	100

Fig. 2 TBA530 block diagram

TBA530

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):-

 $\begin{array}{l} V_{CC}=+12V, \ T_{amb}=+25^{\circ}C\\ \text{Black level: } V_{R-Y}=V_{G-Y}=V_{B-Y}=7.5V\\ V_{Y}=1.5V\\ \text{Reference = pin 6} \end{array}$

Characteristic	Sumbol	Value		Value		Value		Value		Conditions
Characteristic	Symbol	Min.	Тур.	Max.	Onits	Conditions				
Gain of colour channels (B-Y,										
G-Y, R-Y)	G ₂		100		— .					
	G ₃		100		-	f = 0.5MHz (see note 1)				
· · · · ·	G4		100		-					
Ratio of gain of luminance										
amplifier to colour amplifiers	i	0.9		1.1	-					
DC output voltages	V _R		140		V					
	V _G		140		V	See note 2				
	V _B		140		v					
Input resistance of colour										
difference amplifiers	R ₂		60		kΩ					
	R ₃		60		kΩ	f = 1kHz				
	R4		60		kΩ					
Input capacitance of colour					_					
difference amplifiers	C2		3		pF					
	C3		3		pF	f = 1MHz				
	C4		3		pF					
Input resistance of luminance	_									
amplitier	^К 5		20		K75	f = 1 KHz				
Input capacitance of luminance	6		10		~E	f - 1MU2				
ampinier 2dB bandwideb of oll observate			6		рг МЦ-	j - 110172				
Total ourroat drain	в		20							
rotal current orain	тот'		30		mA					

NOTES

1. G is defined as the voltage ratio between the input signals at the pins 2, 3, 4 and the output signals at the collectors of the output transistors.

2. At the collectors of the output transistors. The value of this voltage is also dependent on the external circuitry.

Fig. 3 TBA530 circuit diagram

Fig. 4 Typical application diagram

TBA530

FUNCTIONAL DESCRIPTION

Pin

1. Output load resistor, blue signal

(Also pins 11 and 14 for red and green signals respectively.) Resistors $(47k\Omega, 1W)$ connected to +200V provide the high value loads for the internal amplifying stages. The nominal operating potential on these pins is defined by the IC and the DC feedback and is approximately +8V. The maximum current which can be allowed at each of these pins is 10mA.

2. -(B-Y) input signal

This signal is fed via a low-pass filter from the TBA520 demodulator IC (pin 7) having a DC level of about +7.5V. The input resistance for this pin is typically $60k\Omega$ with an input capacitance of less than 5pF (similarly for pins 3 and 4).

 -(G-Y) input signal The DC black level of this signal is about +7.5V. (See

pin 2.)

- -(R-Y) input signal The DC black level of this signal is about +7.5V. (See pin 2.)
- 5. Luminance signal input

The DC level on this pin for picture black is +1.6V. The required signal amplitude is 1V black-to-white with negative-going syncs (or blanking) for cathode drive as shown. The input resistance at this pin is $20k\Omega$ approximately with a capacitance of less than 15pF.

- 6. Negative supply (earth).
- 7. Current feed point

A current of approximately 2.5mA is required at this pin, fed via a $3.9k\Omega$ resistor from +12V, to bias the internal differential amplifiers. A decoupling capacitor of 4.7nF is necessary.

- Positive 12V supply Maximum supply voltage permitted, 13.2V. Current consumption approximately 30mA.
- 9. Red channel feedback (green channel, pin 12; blue channel, pin 15)

The DC working points and gains of both the output stages and the IC amplifier stages are stabilised by the feedback circuits. The black level potentials at the collectors of the output stages (tube cut-off) are adjusted by setting correctly the DC levels of the colour difference signals produced by the TBA520 demodulator IC. The gains of the R-G-B output stages are adjusted to give the correct white points setting on the picture tube by adjusting the potentiometers in the feedback paths (RV1, RV2).

10. Red signal output (green and blue signal outputs on 13 and 16)

These pins are internally connected with pins 11, 14 and 1 respectively via zener type junctions to give a DC level shift appropriate for driving the output transistor bases directly. To by-pass the Zener junctions at HF three 10nF capacitors are required.

- 11. Output load resistor, red channel (see pin 1).
- 12. Green channel feedback (see pin 9).
- 13. Green signal output (see pin 10).
- 14. Output load resistors, green channel (see pin 1).
- 15. Blue channel feedback (see pin 9).
- 16. Blue signal output (see pin 10).

OPERATING NOTES

Careful attention to earth paths should be given, avoiding common impedances between the input (decoder) side and the output stages. Also, to enable matched performance to be achieved, a symmetrical board and component layout should be adopted for the three output stages. To compensate for the effect upon HF response of inevitable differences the compensating capacitors C₁ and C₂ and C₃ may be appropriately selected for any given board layout.

The signal black level at the collectors of the R-G-B output stages depends upon the +12V supply, the DC level of the colour difference signals from the TBA520 demodulator IC and the black level potential of the luminance signal applied to the TBA530 matrix IC. The DC levels of the signals produced and handled by the IC's are designed to have approximately proportional tracking with the 12V supply potential,

i.e.,
$$\frac{\Delta V (\text{DC level, signal})}{\Delta V 12 V} \simeq \frac{V_{\text{nom (DC level, signal})}}{12}$$

To ensure that changes in picture black level due to variations on the 12⁴V supply to the IC's occur in a predictable way, all the IC's should be operated from a common supply line. This is specially important for the TBA520 and TBA530. Furthermore, to limit the changes in picture black level during receiver operation, the 12V supply should have a stability of not worse than $\pm 3\%$ due to operational variations.

To reduce the possibility of patterning on the picture due to radiation of the harmonics of the products of the demodulation process, the leads carrying the drive signals to the picture tube should be as short as the receiver layout will allow. Resistors (typically 1.5k Ω connected in series with the leads and mounted close to the collectors of the output transistors provide useful additional filtering of harmonics.

CONSUMER TV CIRCUITS

TBA 540

REFERENCE COMBINATION

The TBA540 is an integrated reference oscillator circuit for colour television receivers incorporating an automatic phase and amplitude controlled oscillator employing a quartz crystal, together with a half-line frequency synchronous demodulator circuit. The latter compares the phases and amplitude of the swinging burst ripple and the PAL flip-flop waveform, and generates appropriate ACC, colour killer and identification signals. The use of synchronous demodulation for these functions permits a high standard of noise immunity.

QUICK REFERENCE DATA

- Supply Voltage, V₃₋₁₆ : 12V (Nom.)
- Total Current Drain, I₃: 38mA (Typ.)
- R-Y Ref. Output, V₄₋₁₆ : 1.4Vpp (Typ.)
- Colour Killer Output, V₇₋₁₆ Colour ON : 12V (Typ.) Colour OFF: 250mV (Max.)
- ACC Output Voltage, V9.16:at Correct Phase of PAL Switch : +0.2 to +4V at Incorrect Phase of PAL Switch : +4 to +11V

Fig. 1 Pin connections

ABSOLUTE MAXIMUM RATINGS

Voltages are referred to pin 16

Electrical

Supply voltage V_3 (V_{CC})	13.2V
Total power dissipation at T _{amb} = +60°C	700 mW
Surge current, minimum duty cycle 10:1, I _{7max}	50mA
Temperature	

Storage temperature, T _{stg}	-55°C to +125°C
Operating temperature, Tamb	-10°C to +60°C

Fig. 2 TBA540 block diagram

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

 V_{CC} (V₃) = +12V, T_{amb} = +25°C, V₅ = 1.5Vp-p burst, V₈ = 2.5Vp-p PAL square wave. Voltages referred to pin 16

Characteristic	Pin	Value			l Imita	Conditions
		Min.	Тур.	Max.	Units	Conditions
Output Signals						
B-Y reference signal output	4	1	1.4	2	Vp-p	
Colour killer output	7					
colour 'on'			12 ·		v	
colour 'off'			100	250	mV	
ACC output signal range	9					
at correct phase of PAL switch			+4 to +0.2		v	
at incorrect phase of PAL switch			+4 to +11		v	
Oscillator Section (Amplifier)						
Input resistance	15		3.5		kΩ	
Input capacitance	15		5		рF	
Voltage gain, G ₁₅₋₁	15-1		4.7			
Reactance Control Section						
Voltage gain, G ₁₅₋₂	15-2		1.3			Pins 13 and 14 interconnected
Rate of change of gain with phase				1		
difference between burst					1	
and reference signal, ΔG_{15-2}	15-2	1	5		rad	
Δφ5-4						

FUNCTIONAL DESCRIPTION

Functions listed by pin number

1. Oscillator Feedback Output

The crystal receives its energy from this pin. The output impedance is approximately $2k\Omega$ in parallel with 5pF.

2. Reactance Control Stage Feedback

This pin is fed internally with a sinewave derived from the reference output (pin 4) and controlled in amplitude by the internal reactance control circuit. The phase of the feedback from pin 2 to the crystal via C1 is such that the value of C1 is effectively increased. Pin 2 is held internally at a very low impedance therefore the tuning of the crystal is controlled automatically by the amplitude of the feedback waveform and its influence on the effective value of C1.

3. Positive 12V Supply

The maximum voltage must not exceed 13.2V.

4. Reference Waveform Output

This pin is driven internally by the regenerated subcarrier waveform in B-Y phase. (The output is in B-Y rather than R-Y phase as the burst phase network produces a lag of 90° of the burst applied to pin 5.) An output amplitude of nominally 1.4V peak-to-peak is produced at low impedance. No DC load to earth is required. A DC connection between pins 4 and 6 is, however, necessary via the bifilar coupling inductor. The function of this inductor is to produce, on pin 6, a signal of equal amplitude and opposite phase (-)B-Y)) to that on pin 4. A centre tap on the inductor, is therefore necessary.

5. Burst Waveform Input

A burst waveform amplitude of 1.5V peak-to-peak is required to be AC coupled to this pin. The amplitude of the burst will normally be controlled by the adjustment and operation of the ACC circuit. The input impedance at this pin is approximately $1k\Omega$ and a threshold level of 0.7V. must be exceeded before the burst signal becomes effective. A DC bias of 400mV is internally derived for pin 5.

The absolute level of the tip of the burst at pin 5 will normally reach 1.5V.

6. Reference Waveform Input

This pin requires a reference waveform in the -(B-Y) phase, derived from pin 4 via a bifilar transformer (see pin 4), to drive the internal balanced reactance control stage. A DC connection between pins 4 and 6 must be made via the transformer.

7. Colour Killer Output

This pin is driven from the collector of an internal switching transistor and requires an external load resistor (typically $10k\Omega$) connected to +12V. The unkilled and killed voltages on this pin are then +12V and $<\!250mV$ respectively. (The voltage range on pin 9 over which switching of the colour killed output on pin 7 occurs is nominally +2.5V.)

8. PAL Flip-Flop Square Wave Input

A 2.5V peak-to-peak square wave derived from the PAL flip-flop (in the TBA520 or TBA990 demodulator IC) is required at this pin, AC – coupled via a capacitor. The input impedance is about $3.3k\Omega$.

9. ACC Output

An emitter follower provides a low impedance output potential which is negative-going with a rising burst input amplitude. With zero burst input signal the DC potential produced at pin 9 is set to be +4V (RV1). The appearance of a burst signal on pin 5 will cause the potential on pin 9 to go in a negative direction in the event that the PAL flip-flop is identified to be in the correct phase. The range of potential over which full ACC control is exercised at pin 9 is determined by the control characteristic of the ACC amplifier, i.e., for the TBA560 from 0.8 to 1V. The potential on pin 9 will fall to a value within this range as the burst input signal is stabilised to an amplitude of 1.5V peak-to-peak. The latter condition is achieved by correct adjustment of RV2. If, however, the PAL flip-flop phase is wrong the potential on pin 9 will move positively. The potential divider R5. R6 will then operate a PAL switch cut-off function in the TBA520 demodulator IC.

10. ACC Level Setting

The network connected between pins 10 and 12 balances the ACC circuit and RV1 is adjusted to give +4V on pin 9 with no burst input signal to pin 5. C5 provides filtering.

11. ACC Gain Control

RV2 is adjusted to give the correct amplitude of burst signal on pin 5 (1.5V peak-to-peak) under ACC control.

12. See Pin 10.

13. See Pin 14.

14. DC Control Points in Reference Control Loop

Pins 13 and 14 are connected to opposite sides of a differential amplifier circuit and are brought out for the purpose of DC balancing of the reactance stage and the connection of the bandwidth-determining filter network. Two 2% tolerance 10k resistors with the addition of a 270 Ω resistor at pin 13 are used in place of the previous balancing network. The 270 Ω resistor may be modified according to the nature of the noise that appears at pin 5.

The filter network consists of R2, C2, C3 and C4. The DC potentials on these pins are nominally +6V.

15. Oscillator Feedback

The input impedance at this pin is nominally $3.5k\Omega$ in parallel with 5pF. No DC connection is required on this pin. The voltage gain in the IC between pins 15 and 1 is nominally 4.7 times.

16. Negative Supply (earth).

OPERATING NOTES

Performance and Comments

Initial adjustment

- (a) Remove burst signal.
- (b) Short-circuit pins 13-14. Adjust oscillator to correct frequency by C1.
- (c) Set the ACC level adjustment RV1, to give +4V on pin 9. Remove short circuit.
- (d) Apply burst signal.
- (e) Adjust ACC gain, RV2, to give a burst amplitude of 1.5V peak-to-peak on pin 5.

Phase lock loop performance (with crystal type 4322 152 0110)

- (a) Phase difference between reference and burst signals for ± 400 Hz deviation of crystal frequency, $\pm 10^{\circ}$.
- (b) Typical holding range, ±600Hz. (c)
- (c) Typical pull-in range ±300Hz.
- (d) Temperature coefficient of oscillator frequency, only 2Hz/°C maximum.

Fig. 3 Typical application diagram

CONSUMER

TV CIRCUITS

TBA 560 C

LUMINANCE AND CHROMINANCE CONTROL COMBINATION

The TBA560C is an integrated circuit for colour television receivers incorporating circuits for the processing and control of the luminance and chrominance signals. It can be used in conjunction with the TBA520 or TBA990, 530, 540, 550 and TCA800 integrated circuits.

The luminance part provides luminance delay line matching, DC contrast control, black level clamp circuit, brightness control and flyback blanking.

The chrominance part provides chroma amplification with ACC, DC chroma gain control which tracks with the contrast control, separate saturation control, burst gate, chroma signal flyback blanking colour killer and PAL delay line driver.

The TBA560C is not an equivalent of the TBA500 and 510 although it performs similar functions to those circuits.

ABSOLUTE MAXIMUM RATINGS

Voltages are referred to pin 16

Electrical

V ₁₁ max.	Supply voltage (note 1)	13.2V
V1	0 to +5V	V ₁₀ min	. –5V
V ₂	0 to +12V (note 2)	V12	-5 to +6V
V4	0 to +6V	V13	-3 to +6.5V (note 2)
V ₆	0 to +3V	V14min.	-5V
V ₈	5 to +5V	V15	0 to +5V
Currents (pos	itive when flowing in	to the inte	grated circuit)
11	0 to +1mA	. اوا	-10 to 0mA
13	-1 to +3mA	I ₁₀ max.	+3mA
I5	5 to 0mA	I14max.	+1mA
1 ₆	-1 to +1mA	l ₁₅	0 to +1mA
17	-3 to +2mA		
Ptotmax.	Total power dissipat	tion	
	T _{amb} = 60°C (note	1)	580mW
Femperature			
Storage ter	mperature		-55°C to +125°C
Operating	ambient temperature	-10°C to +60°C	

.

Notes

- 1. Permissible during receiver switch on transient V₁₁max. 16V, $P_{tot}max$. 700mW for t ≥ 60sec.
- 2. V_2 and V_{13} must always be lower than V_{11}

Fig. 1 Pin connections

QUICK REFERENCE DATA

- Supply Voltage (Nom.) (V11-16) 12V
- Supply Current (Nom.) (I₁₁) 30mA
- Luminance Signal Input Current (Typ.) (I_{3(p-p)}) 0.4mA
- Luminance Output Signal at Nominal Contrast Setting (Typ.) and Input Current as Above (V_{5-16(p-p)}) 1V (See Note 1)
- Chrominance Input Signal (Min.) (V_{1-15(p-p})) 4mV
- Chrominance Input Signal (Max.) V_{1-15(p-p})) 80mV
- Chrominance Output Signal at Nominal Contrast and Saturation Setting (Typ.) (Vg.16(p-p)) 1V (See Note 1)
- Contrast Control Range ≥20dB
- Saturation Control Range ≥20dB
- Burst Output (Closed ACC Loop) (Typ.) (V7-16(p-p)) 1V

Fig. 2 TBA560C block diagram

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

 V_{CC} = +12V, T_{amb} = +25°C test circuit = Fig. 6, voltages referred to pin 16

Characteristic		Value				O and this are
Characteristic	FIN	Min.	Typ.	Max.	Units	Conditions
Supply voltage, V _{CC}	11	10.8	12	13.2	V	
Required Input Signals						
Chrominance input signal, p-p value of colour bars with 75% saturation, V ₁₋₁₅	1,15	4	0.4	80 1 5	mV p-p	
Contrast control voltage range for 20dB control	2	2	3.7	5.6	V NA P-P	See note 1 and Fig. 3
Brightness control voltage for black level of 1.5V at O/P	6		1.3		V	See note 2 and Fig. 4
Saturation control voltage range 20dB control	13	2.7	4.4	6.2	v	See note 1 and Fig. 5
Flyback blanking pulse amplitude for OV blanking level at pin 5	8	0	-0.5	-1	Vpk	
for 1.5V blanking level at pin 5		-2	-2.5	-3	Vpk	
Burst keying (back porch) pulse (+ve going)	10	0.05		3	mA pk	
Colour killer	13	0.5		· 1	V	
Automatic chrominance control starting level (–ve going)	14		1.2		v	See note 3
Obtainable Output Signals						
Luminance output voltage (black-to-white) Black level shift	5		1	3 100	V p-p mV	I ₃ = 0.4mA p-p, V ₂ = 3.7V See notes 1 and 4
Burst signal amplitude	7		1		V p-p	
Chrominance signal at nominal contrast and saturation	9		1		V p-р	See note 1
3dB bandwidth of chrominance and luminance amplifier			5		MHz	
Change of ratio of luminance to chrominance				2	dB	Contrast control 10dB

NOTES

1. Nominal contrast or saturation = maximum value -6dB. Thus, the control is +6 to -14dB on the nominal. When V₆ is increased to above 1.7V, the black level of the output signal remains at 2.7V.

2.

3. A negative-going potential provides a 26dB ACC range with negligible signal distortion. Maximum gain reduction is obtained at an input voltage of 500mV min.

4. Black level shift is specified as that due to changes of contrast and video content at constant brightness setting.

FUNCTIONAL DESCRIPTION

1. Balanced Chroma Signal Input (in conjunction with pin 15)

This is derived from the chroma signal bandpass filter, designed to provide a push-pull input. An input signal amplitude of at least 4mV peak-to-peak is required between pins 1 and 15. Both pins require DC potential of approximately +3.0V. This is derived as a common mode signal from a network connected to pin 7 (burst output). In this way DC feedback is provided over the burst channel to stabilise its operation. All figures for the chrominance signal are based on a colour bar signal with 75% saturation; i.e., burst-to-chroma ratio of input signal is 1:2.

2. DC Contrast Control

With +3.7V on this pin, the gain in the luminance channel is such that a 0.4mA black-to-white input signal to pin 3 gives a luminance output signal amplitude on pin 5 of 1V black-to-white. A variation of voltage on pin 2 between $\pm 5.6V$ and $\pm 2V$ gives a corresponding gain variation of ± 6 to >-14dB. A similar variation in gain in the chroma channel occurs in order to provide the correct tracking between the two signals. Beam current limiting can be applied via the contrast control network as shown in the peripheral circuit, when a separate overwind is available on the line output transformer.

3. Luminance Signal Input

This terminal has a very low input impedance and acts as a current sink. The luminance signal from the delay line is fed via a series terminating resistor and a DC blocking capacitor and requires to be about 0.4mA peak-to-peak amplitude. A DC bias current is required via a $12k\Omega$ resistor to the +12V line.

4. Charge Storage Capacitor for Black Level Clamp

5. Luminance Signal Output

An emitter follower provides a low impedance output signal of 1V black-to-white amplitude at nominal contrast setting having a nominal black level in the range 0 to +2.7V. An external emitter load resistor is required, not less than $1k\Omega$. If a greater luminance output is required than 1V, with normal control settings, the input current swing at pin 3 should be increased in proportion.

6. Brightness Control

Over the range of potential +0.9 to +1.7V the black level of the luminance output signal (pin 5) is increased from 0 to +2.7V. The output signal black level remains at +2.7Vwhen the potential on pin 6 is increased above +1.7V.

7. Burst Output

A 1V peak-to-peak burst (controlled by the ACC system) is produced here. Also, to achieve good DC stability by negative feedback in the burst channel the DC potential at this pin is fed back to pins 1 and 15 via the chroma input transformer.

8. Flyback Blanking Input Waveform

Negative going horizontal and vertical blanking pulses may be applied here. If rectangular blanking pulses of not greater than -1V negative excursion, or DC coupled pulses of similar amplitude whose negative excursion is at zero volts DC are applied, the signal level at the luminance output (pin 5) during blanking will be 0V. However, if the blanking pulses applied to pin 8 have an amplitude of -2 to -3V the signal level at the luminance output during blanking will be +1.5V. The negative pulse amplitude should not exceed -5V.

9. Chroma Signal Output

With a 1V peak-to-peak burst output signal (pin 7) and at nominal contrast and saturation setting (pins 2 and 13) the chroma signal output amplitude is 1V peak-to-peak. An external network is required which provides DC negative feedback in the chroma channel via pin 12.

10. Burst Gating and Clamping Pulse Input

A positive pulse of not less than 50μ A is required on this pin to provide gating in the burst channel and luminance channel black-level clamp circuit. The timing and width of this current pulse should be such that no appreciable encroachment occurs into the sync. pulse or picture line periods during normal operations of the receiver.

11. +12V Supply (V_{CC})

Correct operation occurs within the range **10.8** to **13.2V.** All signal and control levels have a linear dependency on supply voltage but, in any given receiver design this range may be restricted due to considerations of tracking between the power supply variations and picture contrast and chroma levels. The power dissipation must not exceed 580mW at 60°C ambient temperature.

12. DC Feedback for Chroma Channel (see pin 9)

13. Chroma Saturation Control

A control range of +6dB to>-14dB is provided over a range of DC potential on pin 13 from 6.2 to 2.7V. Colour killing is also achieved at this terminal by reducing the DC potential to less than +1V, e.g., from the TBA540 colour killer output terminal. The minimum "kill factor" is 40dB.

14. ACC Input

A negative-going potential gives an ACC range of about 26dB starting at +1.2V. From 1V to 800mV the steepest part of the characteristic occurs, but a small amount of gain reduction also occurs from 800mV to 500mV. The input resistance is at least 50k $\Omega.$

15. Chroma Signal Input (see pin 1)

16. Negative Supply, OV (Earth)

Fig. 6 Application diagram

TBA800

5W AUDIO AMPLIFIER

The TBA800 is a robust high efficiency audio amplifier especially designed for Television Receivers.

FEATURES

- Wide Supply Voltage Range
- High Efficiency
- Low Cost
- Second Source Availability

ABSO

BSOLUTE MAX	IMUM RATINGS		
Supply voltage	Pin 1 or 3 V _{CC}	30V	
Peak load current	Pin 12	1.5A	Q
Power dissipation		5W (case temp 90°C)	_
Operating temperation	ture (with 25°C/W he	at sink)	
		–10°C to +65°C	
Junction temperate	ire	150°C	

	-10°C to +65°C
Junction temperature	150°C
Storage temperature	-25°C to +125°C

UICK REFERENCE DATA

- Supply Voltage Range: 5 to 30V
- Efficiency at 4W: 70%
- Power Into 16Ω Load (V_{CC} = 24V): 5W

Fig. 2 TBA800 circuit diagram

TBA800

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

 $T_{amb} = +25^{\circ}C$

 $V_{CC} = 24V Rf = 56\Omega R_L = 16\Omega$ frequency 1 kHz

Reference point is pin 9

Measurements made in typical application circuit, Fig. 8

Characteristic	Dia	Pia			Linite	Canditiant	
Characteristic	- in	Min.	Тур.	Typ. Max.		Conditions	
Supply voltage V _{CC}	1, 3	5	24	30	v		
Quiescent output voltage	12	11	12	13	V V		
Quiescent current	1, 3		9	20	mA		
Input current	8		1	5	μA		
Output power	12	4.4	5		- W	10% THD	
Input voltage	.8		80		mV	Output power 5W	
Input impedance	8		5		MΩ		
3dB bandwidth			40 to 20k		Hz		
Total harmonic distortion	12		0.5		%	o/p power 50mW to 2.5mW	
Open loop gain			70		dB	$Rf = 0\Omega$	
Closed loop gain		39	42	45	dB	$Rf = 56\Omega$	
Input noise voltage	8		5	· ·	μV	404- 4- 2044	
Input noise current	8	. 1	0.2		nA		
Efficiency			70		%	Output power 4W	
Thermal resistance				70	°c/w	Junction to ambient	
				12	°c/w	Junction to fin	

Fig. 6 Max. device power dissipation v. supply voltage

Fig. 7 Total harmonic distortion v. frequency

Fig. 8 Typical application

APPLICATION NOTE

When using a supply of 10V or less, pin 3 should not be connected and the bootstrap capacitor C8 should be omitted.

\$

CONSUMER TV CIRCUITS

TBA 920 TBA 920S

The TBA920 is a silicon integrated circuit designed for TV receiver applications. It accepts the composite video signal, separates sync. pulses with the added safeguard of noise gating and provides a sync. output for the vertical integrator. Also incorporated is the line oscillator together with two phase comparators: one to compare flyback pulses to the oscillator and the other for sync. phase comparison. The TBA920S is a special selection of the TBA920 (see Electrical Characteristics).

- Sync separator
- Noise Gate
- Line Oscillator
- Dual Phase Comparator
- Suitable for Thyristor or Transistor Systems

QUICK REFERENCE DATA

Supply Voltage (nom.)	12V
Video I/P (+ve Svnc)	3V
Flywheel Pull-in Range	±1kHz
Output Current	20mA

Fig. 1 Pin connections

ABSOLUTE MAXIMUM RATINGS

Reference point is pin 16 unless otherwise stated

Supply voltage, V _{CC}	13.2V
Voltage at pin 3, V ₃	0 to 13.2V
Voltage at pin 8, $-V_8$	12V
Voltage at pin 10, V ₁₀	-0.5 to +5V
Average current pin 2, I _{2av}	20mA
Peak current, pin 2, I _{2pk}	200mA
Peak current, pin 5, I _{5pk}	10mA
Peak current. pin 7, I7pk	10mA
Peak current, pin 8, I _{8pk}	10mA
Peak current, pin 9, Igpk	10mA
Total power dissipation, Ptot	600mW
Storage temperature, T _{stg}	–55 to +125°C
Operating ambient temperature, Tamb	–10 to+60°C

Fig. 2 Block diagram

TBA920/TBA920S

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

V_{CC} = +12V T_{amb} = +25°C Reference point pin 16

Measured in test circuit Fig. 3 (CCIR standard)

Channadani din	Combal	Value				Conditions		
	Symbol	Min.	Тур.	Max.	Units	Conditions		
Current consumption	11		35		mA	l ₂ = 0		
REQUIRED INPUT SIGNALS								
Video Signal (Pin 8)								
Input voltage, peak-to-peak Peak input current during sync. pulse	V _{in p-p} I _{8pk}	1	3 100	7	ν μΑ	Positive-going sync.		
Noise Gating (Pin 9)	,							
Input voltage, peak Input current, peak Input resistance	V _{9pk} I _{9pk} R9	0.7 0.03	200	10	ν mA Ω			
Flyback Pulse (Pin 5)								
Input voltage, peak Input current, peak Input resistance Pulse duration	V _{spk} I _{spk} Rs ts	0.05 10	±1 1 400		V mA Ω μs	fo = 15625 Hz		
DELIVERED OUTPUT SIGNALS								
Composite Sync. Pulses, +ve, Pin 7								
Output voltage, p-p Output resistance	V _{7p-p}		10	Ì	v			
at leading edge of pulse (emitter follower)	R ₇		50		ß			
Additional external load resis- tance	R _{7ext}	2.0	2.2		kΩ			
Driver Pulse (Pin 2)								
Output voltage, p-p	V _{2p-p}		10		v			
Average output current	l _{2av}			20	mA			
Peak output current	l _{2pk}			200	mA			
Output resistance (low ohmic) Output pulse duration	R ₂		15 2.5		Ω Ω	$V_2 = +10.5V$, external resistor pins		
synchronised Permissible delay between	t2		12 to 32		μs	See operating notes (1)		
leading edge of output pulse and flyback pulse	t _{otot}		0 to 15		μs	$t_s = 12 \mu s$		
Supply voltage at which output pulses are obtained	Vcc	4			v			
Oscillator								
Free-running frequency Spread of frequency at nominal values of perinheral components	$f_0 \Delta f_0 \Delta f_0$		15625		Hz	$R_{15} = 3.3 k\Omega$, See operating notes (2)		
TBA920 TBA920S	Jo			±5 ±1.5	% %	See note 1 "" See note 1 ""		
Frequency change when decreas- ing supply down to minimum 4V	$\left \frac{\Delta f_0}{f_0}\right $			10	%			
Frequency control sensitivity	$\frac{\Delta f_0}{\Delta I_{1.5}}$		16.5		Hz/μA			
Adjustment range of network in circuit of Fig. 3	$\frac{\Delta f_0}{f_0}$		±10		%			

TBA920/TBA920S

Ot and the left in		Value				
Characteristic	Min. Typ. Max.		Units	Conditions		
Influence of supply voltage on frequence at $V_p = 12V$	$\frac{\hbar f_0 / f_0}{\delta V_p / V_{pnom}}$			5	%	
Control Loop I (Between Sync. Pulse and Oscillator)						
Control voltage range	V12		0.5 to 5.5		v	
Control current, peak	I2pk		±2		mA	V10>4.5V, V6>1.5V
			±6		mA	V₁₀<2V, V₅>1.5V
Loop gain of APC system	∆f ∆t		1		kHz/µs	Time coincidence between sync. pulse and flyback pulse or V ₁₀ >4.5V
			3		kHz/μs	No time coincidence or $V_{10} < 2V$
Capture and holding range	Δf		±1		kHz	See note 2
Pull-in time	t		20		ms	$\Delta f / f_0 = \pm 3\%$ ($\Delta f = 470 Hz$), see Fig. 3
Switch-over from high control sensitivity to low control sensitivity after capture	t		20		ms	See Fig. 3
Control Loop II (Between Flyback Pulse and Oscillator)						
Permissible delay between leading edge of output pulse (pin 2) and leading edge of						
flyback pulse	tdtot		0 to 15		μs	
Static control error	$\frac{\Delta t}{\Delta t_d}$			0.5	%	See operating notes (3)
Peak output current during flyback pulse	I4pk		±0.7		mA	
Overall Phase Relation			ļ	1		
Phase relation between leading edge of sync. and middle of						
flyback pulse	t		4.9		μs	See operating notes (4)
Tolerance of phase relation	∆t		}			
TBA920]	±0.7	μs	See operating notes (5)
IBA920S]	00	±0.4	μs	See operating notes (5)
Voltage for $t_2 = 12$ to 32μ s	V ₃	1	6 10 8		l v	
Adjustment sensitivity	$\frac{\Delta t_2}{\Delta V_1}$		10		μs/V	
Input current	13			2	μA	
External Switch-over ot Parameters (Loop Filter and Loop Gain) of Control Loop I (e.g. for Video Recorder Application). See Note 3					1	
Required switch-over voltage	V10	4.5	1		V	$R_{11} = 150\Omega$
Required switch-over current	110		80 120	2.0	ν μΑ μΑ	
	1	1	1	1	1	1

NOTES 1. Exclusive of external component tolerances 2. Adjustable with R₁₂-15 3. With sync. pulses at pins 7 and 8; without RC network at pin 10

TBA920/TBA920S

OPERATING NOTES

1. The output pulse duration is adjusted by shifting the leading edge (V₃ from 6V to 8V). The pulse duration is a result of delay in the line output device and the action of the second control loop in the TBA920.

For a line output stage with a BU108 high voltage transistor the resulting duration is about $22\mu_s$, and in such a way that the line output transistor is switched on again about $8\mu_s$ after the middle of the line flyback pulse. This pulse duration must be taken into account when designing the driver stage and driver transformer as this way of driving the line output device differs from the usual, i.e. a driver duty cycle of about 50%.

2. The oscillator frequency can be changed for other TV standards by an appropriate value of C_{14} .

3. The control error is the remaining error in reference to the nominal phase position between leading edge of the sync. pulse and the middle of the flyback pulse caused by a variation in delay of the line output stage.

4. This phase relation assumes a luminance delay line with a delay of 500ns between the input of the sync. separator and the drive to the picture tube. If the sync. separator is inserted after the luminance delay line or if there is no delay line at all (monochrome sets), then the phase relation is achieved at $C_5 = 560 pF$.

5. The adjustment of the overall phase relation and consequently the leading edge of the output pulse at pin 2 occurs automatically by the control loop II or by applying a DC voltage to pin 3.

5

Fig. 3 Application diagram

CONSUMER

TV CIRCUITS

TBA950 : 2X

LINE OSCILLATOR COMBINATION

The TBA950:2X is a monolithic integrated circuit for pulse separation and line synchronisation in TV receivers with transistor output stages.

The TBA950:2X comprises the sync. separator with noise suppression, the frame pulse integrator, the phase comparator, a switching stage for automatic changeover of noise immunity, the line oscillator with frequency range limiter, a phase control circuit and the output stage.

It delivers prepared frame sync. pulses for triggering the frame oscillator. The phase comparator may be switched for video recording operation. Due to the large scale of integration few external components are needed.

Fig. 1 Pin Connections

229

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

 $T_{amb} = +25^{\circ}C$

 $f_0 = 15625Hz$ in the test circuit Fig.2 (see note 1)

			Value			
Characteristic	Symbol	Min.	Тур.	Max.	Units	Conditions
Amplitude of frame pulse Frame pulse duration Output resistance at pin 7 (high state) Amplitude of sync. pulse Output resistance at pin 6 Output pulse duration Residual output voltage Oscillator frequency Frequency pull-in range Frequency pull-in range Frequency holding range Slope of phase comparator control loop Gain of phase control Phase shift between leading edge of composite video signal and line flyback	$\begin{array}{c} V_1 \\ t_7 \\ R_{out} \ 7 \\ V_6 \\ R_{out} \ 6 \\ t_2 \\ V_2 \ res \\ f_o \\ \pm \ \Delta f_F \\ \pm \ \Delta f_F \\ df_o/dt_d \\ dt_d/dt_p \end{array}$	7.5 2.5 25 14843 400 400	>8 >150 10 >8 <0.55 15625 2 20	13 4.5 28.5 16406 1000 1000	V μs kΩ V μs V Hz Hz Hz kHz/μs	Typical range 12 = 20mA $C_{13/1} = 10nF$ $R_{14/1} = 10.5k \Omega$ Typical range Typical range
pulse (see note 2) adjustable by V11	tv	—1		3.5	μs	Typical range

NOTES

1. By modification of the frequency-determining network at pins 13 and 14, these ICs can also be used for other line frequencies.

2. The limited flyback pulse should overlap the video signal sync. pulse on both edges.

OPERATING NOTES

The sync. separator separates the synchronizing pulses from the composite video signal. The noise inverter circuit, which needs no external components, in connection with an integrating and differentiating network frees the synchronizing signal from distortion and noise.

The frame sync. pulse is obtained by multiple integration and limitation of the synchronizing signal, and is available at pin 7. The *RC* network hitherto required between sync. separator and frame oscillator is no longer needed. Since the frame sync. pulse duration at pin 7 is subject to production spreads it is recommended to use the leading edge of this pulse for triggering.

The frequency of the line oscillator is determined by a 10 nF polystyrene capacitor at pin 13 which is charged and discharged periodically by two internal current sources: The external resistor at pin 14 defines the charging current and consequently in conjunction with the oscillator capacitor the line frequency.

The phase comparator compares the sawtooth voltage of the oscillator with the line sync. pulses. Simultaneously an AFC voltage is generated which influences the oscillator frequency. A frequency range limiter restricts the frequency holding range.

The oscillator sawtooth voltage, which is in a fixed ratio to the line sync. pulses, is compared with the flyback pulse in the phase control circuit, in this way compensating all drift of delay times in driver and line output stage. The correct phase position and hence the horizontal position of the picture can be adjusted by the 10 k Ω potentiometer connected to pin 11. Within the adjustable range the output pulse duration (pin 2) is constant. Any larger displacements of the picture, e.g. due to non-symmetrical picture tube, should not be corrected by the phase potentiometer, since in all cases the flyback pulse must overlap the sync. pulse on both edges (see Fig. 3).

The switching stage has an auxiliary function. When the two signals supplied by the sync. separator and the phase control circuit respectively are in synchronism a saturated transistor is in parallel with the integrated 2 k Ω resistor at pin. 9. Thus the time constant of the filter

Fig. 3 Phase relationships

network at pin 4 increases and consequently reduces the pull-in range of the phase comparator circuit for the synchronized state to approximately 50Hz. This arrangement ensures disturbance-free operation.

For video recording operation this automaic switchover can be blocked by a positive current fed into pin 8, e.g. via a resistor connected to pin 3. It may also be useful to connect a rsistor of about 630 Ω or 1 k Ω between pin 9 and earth. The capacitor at pin 4 may be lowered, e.g. to $0.1\mu F$. These alterations do not significantly influence the normal operation of the IC and thus do not need to be switched.

The output stage delivers at pin 2 output pulses of duration and polarity suitable for driving the line driver stage. If the supply voltage goes down (e.g. by switching off the mains) a built-in protection circuit ensures defined line frequency pulses down to $V_3 = 4V$ and shuts off when V_3 falls below 4V, thus preventing pulses of undefined duration and frequency. Conversely, if the supply voltage rises, pulses defined in duration and frequency will appear at the output pin as soon as V_3 reaches 4.5V. In the range between $V_3 = 4.5V$ and full supply the shape and frequency of the output pulses are practically constant.

RECOMMENDED OPERATING CONDITIONS

For operating circuits Figs. 4 and 5

Input current during sync. pulse I5	>5µA
Composite video input signal Vin p-p	3(1 to 6)V
Input current during line flyback pulse I10	0.2 to 2 mA
Switchover current la	>2mA
Time difference between the output pu	lse at pin 2
and the line flyback pulse at 10, td	<20µs
Current consumption (see Fig. 6) I ₃	<31 mA
Ambient operating temperature range, Tan	$hb 0 to +60^{\circ}$

Fig. 4 Operating circuit (thryistor output stage) *Input circuitry must be optimised

Fig. 5 Another possibility for line frequency adjustment (transistor output stage) *Input circuitry must be optimised 231

Fig. 6 Graph for determining the supply series resistor R5

ABSOLUTE MAXIMUM RATINGS

All voltages are referred to pin 1

Supply current (see Fig. 6) Is:	45mA
Input current Is:	2mA
Input voltage Vs	6V
Output current l2	22mA
Output voltage V ₂ :	12V
Switch-over current for video recording Is	5mA
Phase correction voltage V11:	0 to V₃
Operating temperature range -10°C to	+60°C
Storage temperature range -55°C to	+125℃

CONSUMER

TV CIRCUIT

TCA800

COLOUR DEMODULATOR WITH FEEDBACK CLAMPS

A monolithic integrated circuit for colour television receivers incorporating two active synchronous demodulators for the $F_{B,Y}$ and $\pm F_{R,Y}$ signals, a G-Y matrix, PAL switch bistable and RGB matrix, suitable for driving simple single transistor video output stages. The circuit incorporates three feedback clamps to stabilise the black level, to eliminate the problem of thermal drift in the demodulators.

OPERATING NOTES

For alternative applications in a simple decoder circuit, it must be possible to trigger the flip-flop so that it runs in the correct ident. phase by means of an AC coupled, 2 volt p-p square wave, derived from the APC loop in the reference generator circuit. (The normal input line timebase pulse would still be applied in order to provide clamp pulses.)

Input impedance of output amplifier (BF337) (Expressed as parallel resistance and capacitance.)

R (typ.) 5kΩ C (typ.) 80pF

The above values are given for suitable design of output stages i.e. emitter follower with 5mA current capability.

Fig. 1 Pin connections

QUICK REFERENCE DATA

V_{supply} -(Nominal) 12V

I_{supply} -(Nominal) (I₈ = 0.5mA) 47mA Voltage Gain of Chrominance (R-Y) Signal Channel (typ.) $V_{in(p-p)} = 50mV; f =$ 4.43MHz; Video Gain = X20 17.5V/V Voltage Gain of Luminance (Y) Channel V_{in} (Black-to-White) = 1V (p-p) 5V/V

Operating Temperature Range -10 to +55°C

233

TCA800

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

 $T_{amb} = +25^{\circ}C, V_{CC} = +12V$

		Value					
Characteristic	Min. Typ. Max		Max.	Units	Conditions		
Supply voltage range	9	10.8	12	13.2	v		
Voltage gain of chrominance (R-Y) signal channel			17.5		v/v	V _{in p-p} = 50mV, f = 4.43MHz, video gain = X20	
Voltage gain of luminance (Y) channels Bandwidth (–3dB) of luminance channel from Y input to B.G.B outputs			5 10		V/V	Vin (black-to-white) = 1V p-p	
Bandwidth (-3dB) of chroma channel from $F_{(R-Y)}$, $F_{(B-Y)}$ inputs to R-G-B outputs			1		MHz		
Ratio of demodulated signals V(B·Y)/V(R·Y) V(G·Y)/V(R·Y)		1.60 0.76	1.78 0.85	1.96 0.94		Defined with equal chroma input signals and measured at output pins (see note 1)	
Input Characteristics Chrominance input impedance (expressed as resistance and parallel capacitance R	10, 11		1000		Ω		
C				10	pF	j = 4.43MHz, V _{in} = 20mV sinewave	
(fixed by TBA560)	1	1.4	1.5	1.8	v		
Luminance (Y) input, black level potential (nominal brightness set by brightness control of TBA560)	1		1.7		v		
Luminance (Y) input black-to-white amplitude (adjusted by contrast control of TBA560)	1		1.0		∨р-р		
Reference input impedance (expressed as resistance and parallel capacitance)	13, 15						
R C			5.0 5.0	10	kΩ pF	f = 4.43MHz	
Reference input voltage (from TBA540)	13, 15	0.5	1.0	2.0	Vр∙р		
Phase shift between reference inputs and chroma input signal to give coincidence at the synchronous demodulators	13, 15		10		degrees		
Ident. voltage for ident 'off'	14	+6		I	v		
Ident. voltage for ident 'on'	14			+7.0	v		
Ident. current for ident 'off'	14			0.1	mA		
Iracking of ident, threshold with a supply variation of $\pm 10\%$							
Vthreshold · ΔVCC	14		1.0				
Required line pulse input current to clamps and H/2 flip-flop	8	0.3	0.45	0.6	mA		
Window level (see note 2)	8		+12.5		v		
Line input impedance	8	0.6	1.0	1.4	kΩ		
Output Characteristics							
R-G-B outputs blanking level	3,57		2.0		V DC	Blanking level at pin 1 = 1.5V	
variation over a temperature range of 40°C		Se	e note	3			
Blanking-to-white level output				-			
voltage capability of each output amplifier channel	3, 5, 7	6		8	V p-p		

TCA800

Ohanashariatia		Value			11		
Characteristic	F 10	Min.	Vin. Typ. Max.			Conditions	
Difference in clamped blanking level of outputs i.e., R to G to B	3,5,7			50	mV		
Differential drift of clamped output blanking levels over temperature range of 40°C	3, 5, 7			25	mV		
Residual 4.43MHz signal at R-G-B outputs Red Blue				150	mVp-p mVp-p		
H/2 square wave output amplitude	12	2.5	3.5		V р-р	Measured with 3k Ω load i.e. TBA540	

NOTES

- These values are chosen to minimise errors in flesh tones and of the luminance of the green component. The matrix equation for the derivation of the G-Y component is given by G-Y = -0.51(R-Y) -0.19(B-Y). (This is derived from the basic colour equation Y = 0.30R + 0.59G + 0.11B.) Measured at the tube cathodes with 100V p-p video drive.
- 2. In order to provide a clamp pulse which occurs inside the blanking waveform and free from the edge spikes, it is necessary to window the line pulse at about two thirds of its amplitude.
- In order to partially compensate for drift in output stages a negative temperature coefficient to compensate for the variation in the video output transistor has been incorporated.

Fig. 3 Line pulse, blanking and clamp timings

ABSOLUTE MAXIMUM RATING

Max. dissipation @ $+55^{\circ}C = 900mW$ Storage temperature range $-55^{\circ}C$ to $+125^{\circ}C$

TDA 440 VIDEO IF AMPLIFIER / DEMODULATOR

The TDA440 incorporates the following functions:

- 1. Three-stage symmetrical IF (broad band) amplifier with first and second stages AGC-controlled.
- 2. Controlled video carrier demodulator.
- 3. Video drive amplifier with low-pass response and output independent of supply fluctuations.
- 4. Gated AGC section for IF amplifier.
- 5. Delayed regulated output voltage for the tuner preamplifier.

Fig. 1 Pin connections.

FEATURES

- High Gain High Stability
- Constant Input Impedance Independent of AGC
- Low Noise Independent of AGC
- High Supply Rejection
- Low RF Breakthrough to Video O/Ps
- Fast AGC Action

- Very Low Intermodulation Products
- Minimum Differential Error
- Positive and Negative Video O/Ps
- Low Impedance Video O/Ps
- Temperature Compensated
- Peak White Adjustable

Fig. 2 TDA440 block diagram.

TDA440

ABSOLUTE MAXIMUM RATINGS

Reference point is pin 3

Rating	Pin	Symbol	Value	Units
Supply voltage range Low voltage stabiliser supply current	13 14	V _{CC}	10 to 15 50	V mA
Open loop voltage	5	V5	15	V
Video DC output current Average positive Peak positive Average negative Peak negative White level control Power dissipation at T _{amb} ≤55°C Ambient temperature range Storage temperature range	12 12 11 11 10	l 12 l 12 l 11 l 11 l 11 V 10 P tot T _{amb} T _{stg}	5 30 5 30 3.2 700 -10 to +65 -55 to +125	mA mA mA ₩ ₩ ° ° ° °

Fig. 3 Test and application circuit.

Fig. 4 Modifications to Fig. 3 for improving audio interference and cross-colour characteristics.

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

T_{amb} = +25°C V_{CC} = +12V Reference point is pin 3

CharacteristicPinMin.Typ.Max.OnitsCondutionsSupply voltage, VCC13101215VSupply voltage, stabiliser input145.55.86.4VPositive video DC output voltage115.5VVPeak black clamping level for positive video DC output voltage115.5VVPeak black clamping level for positive video DC output voltage111.751.92.15VDC output current111.751.92.15VNANegative gating pulse77.5MAReference point pin 13Negative gating pulse77.5MANHzComposite video OC output voltage111.02.0dBAGC range, ΔAGC 50566BVideo frequency response change1.02.0dB $\Delta AGC = 50dB$, video bandwidth = 0 to 5Symmetrical input voltage for 3.3Vp-p output swith selective circuit1230mVf = 38.9MHz sound carrier level = 30dBDifferential gain of negative comp, video outputs with selective circuit1230mVf = 5.5MHz, picture carrier level = $-24dB$ Differential gain of negative subcarrier level1 4.47 40dBPicture carrier = 0dB, IF colour subcarrier $-24dB$ Input impedance AGC max.11.4472 $4.47/2$ k $\Omega/2/pF$ Reference point pin 16		D ¹	Value		11.24	0	
Supply voltage, VCC Supply voltage, stabiliser input Positive video DC output voltage tide DC output voltage for positive video DC output voltage for positive video DC output voltage for positive video DC output voltage 1110 12 15 5.512 5.5 6.4 VI 1.4 VPeak black clamping level for positive video DC output voltage DC output current Negative video DC output voltage Composite video DC output voltage To control current Negative video DC output voltage To Composite video output level To Symmetrical input voltage for 3.3/p - potput (pin 11) Maximum IF voltage level present at video outputs with selective circuit To Sound IF voltage level present at video output signal for full black to white swing Suppression of sound carrier/colour subpression of sound carrier/colour subpression of sound carrier/colour suppression of sound carrier/c	Characteristic	Pin	Min.	Тур.	Max.	Units	Conditions
Supply current, I_{13} 13151925mASupply voltage, stabiliser input145.55.86.4VPositive video DC output voltage11145.55.86.4VWhite level adjustment range111.55.5VVPeak black clamping level for6.56.5VVRw (pin 10) = ∞ Positive video DC output voltage111.751.92.15VDC output current113.25.6VNANegative video DC output voltage111.751.92.15VAvailable tuner control current577.5mA10dB after onset of tuner control actionNegative video output level113.3101.9Vp-pV11 = 5.5VDCComposite video output level113.310MHz $\Delta AGC = 50dB$, video bandwidth = 0 to 5Video 3B bandwidth8101.02.0dB $\Delta AGC = 50dB$, video bandwidth = 0 to 5Maximum IF voltage level present at video outputs with selective circuit1230mVf = 38.9MHzGorings ubgression of sound carrier/colour1230mVf = 5.5MHz, <u>picture carrier level = 30dB</u> Differential gain of negative coolur subcarrier level4040404040Input impedance AGC max.11.4/2404040Input impedance AGC max.11.4/2K $\Omega Z/\rho F$ Ference point pin 16 </td <td>Supply voltage, Voc</td> <td>13</td> <td>10</td> <td>12</td> <td>15</td> <td>v</td> <td></td>	Supply voltage, Voc	13	10	12	15	v	
Supply voltage, stabiliser input Positive video DC output voltage White level adjustment range for positive video DC output voltage Peak black clamping level for positive video DC output voltage 11 Negative sideo DC output voltage Available tuner control current Negative gating pulse 7 Composite video output level AGC range, $\triangle AGC$ Video frequency response change Symmetrical input voltage for 3.33V-p output (pint 10) Symmetrical input voltage for 3.34V-p output (pint 10) Maximum IF voltage level present at video outputs with selective circuit Differential gain of negative colour subcarrier level Input impedance AGC max. AGC max. AG	Supply current, 112	13	15	19	25	mA	
Positive video DC output voltage White level adjustment range for positive video DC output voltage Peak black clamping level for positive video DC output voltage DC output current Negative video DC output voltage DC output current Negative video DC output voltage T1 1.75 1.9 2.15 V Reference point pin 13 Negative video DC output voltage Available tuner control current Negative video DC output voltage T 1.5 3 5 V p-p Composite video output level AGC range, ΔAGC Video 3dB bandwidth Video frequency response change Symmetrical input voltage for 3.3Vp-p output (pin 11) Maximum IF voltage level present at video outputs with selective circuit Differential gain of negative comp, video output signal for full black to white swing Suppression of sound carrier/colour subcarrier (1.07MH2) wr.t colour subcarrier level Input impedance AGC max. AGC max.	Supply voltage, stabiliser input	14	5.5	5.8	6.4	v	$I_{14} = 40 \text{mA}$
White level adjustment range for positive video DC output voltage114.8VRw V(pin 10) = ∞ Rw (pin 10) = 0Peak black clamping level for positive video DC output voltage111.751.92.15VDC output current113.2MAReference point pin 13Negative video DC output voltage125.6VAvailable tuner control current577.5mANegative video DC output level113.3V/P.pZornposite video output level113.3V/P.pVideo 3dB bandwidth102.0dBVideo 3dB bandwidth1-161001502.0Wrmetrical input voltage for 3.3V-p- output (pin 11)1-16100150220AGC range11,1,1230mVSound IF voltage level present at video output swith selective circuit1230Differential gain of negative coonp. video output signal for full black to white swing4015%Picture carrier level adG max.11.4/2K Ω/pF Picture carrier = 0dB, IF colour subcarrier level = $-244B$ Input impedance AGC min.11.4/2 K_Ω/pF Picture carrier = ooth pin 16	Positive video DC output voltage	11		5.5		l v l	A 7
for positive video DC output voltage114.8VRw VRw (pin 10) = 0Peak black clamping level for positive video DC output voltage111.751.92.15VDC output current113.25.6VNNegative video DC output voltage125.6VNAvailable tuner control current577.5mANegative gaing pulse71.55VppComposite video output level113.3VppVideo 3dB bandwidth810MHzVideo 3dB bandwidth810MHzVideo frequency response change100150220 $\mu Vr.m.s$ Symmetrical input voltage for 3.3Vp-p output (pin 11)1-16100150220 $\mu Vr.m.s$ Maximum IF voltage level present at video outputs with selective circuit1230mVf = 38.9MHz f = 77.8MHz (2nd harmonic)Sound IF voltage level present at video outputs with selective circuit1230mVf = 5.5MHz, picture carrier level = sound carrier level = -244BInput impedance AGC min.11.4/24040BPicture carrier = 0dB, IF colour subcarrier level = -ddB, IF sound carrier level = -244B	White level adjustment range						
Peak black clamping level for positive video DC output voltage DC output current111.751.92.15V R_w (pin 10) = ∞ Negative video DC output voltage Available tuner control current111.751.92.15VNegative video DC output voltage Available tuner control current577.5mANegative gating pulse Composite video output level71.535Vp-pAGC range, $\triangle AGC$ 5056dBVideo 3dB bandwidth505056dBVideo ortput (pin 11)1.161001502.0dBAGC range111.16100150220 μ Vr.m.sSymmetrical input voltage for 3.3Vp-poutput (pin 11)1.16100150220 μ Vr.m.sMaximum IF voltage level present at video output signal for full black to white swing111.230mVf = 38.9MHzSuppression of sound carrier/colour subcarrier (1.07MHz) w.r.t colour subcarrier level1015%mVf = 5.5MHz, picture carrier level = -24dB-24dBInput impedance AGC min.11.4/2404040BPicture carrier = 0dB, IF colour subcarrier level =6dB, IF sound carrier level = -24dB	for positive video DC output voltage	11					
Peak black clamping level for positive video DC output voltage DC output current111.751.92.15VReference point pin 13Negative video DC output voltage Available tuner control current111.751.92.15VReference point pin 13Negative gating pulse Composite video output level113.3Vp-pVNAReference point pin 13Negative gating pulse Composite video output level71.535Vp-pV11 = 5.5VDCAGC range, $\triangle AGC$ 5056dBMHzVideo 3dB bandwidth810MHz $\triangle AGC = 50dB$, video bandwidth = 0 to 5Video frequency response change1.16100150220 $\mu Vr.m.s$ Symmetrical input voltage for 3.3Vp-p output (pin 11)1.16100150220 $\mu Vr.m.s$ Maximum IF voltage level present at video outputs with selective circuit1230mVf = 38.9MHz f = 77.8MHz (2nd harmonic)Sound IF voltage level present at video outputs with selective circuit1230mVf = 5.5MHz, picture carrier levelDifferential gain of negative comp. video output signal for full black to white swing4015%Input impedance AGC min.11.4#/2 $k \Omega Z/pF$ kInput impedance AGC min.11.4#/1.9k $\Omega Z/pF$ Reference point pin 16	·				4.8	V	R_w (pin 10) = ∞
Peak black clamping level for positive video DC output voltage DC output current111.751.92.15V mAReference point pin 13Negative video DC output voltage Available tuner control current577.55V mA10dB after onset of tuner control actionNegative video output level113.3V 4.2Vp-pV11 = 5.5VDCComposite video output level113.3Vp-pV11 = 5.5VDCComposite video output level113.3Vp-pV11 = 6.4VDCAGC range, ΔAGC 5056dBMHzVideo 3dB bandwidth810MHzVideo frequency response change1.02.0dB $\Delta AGC = 50dB$, video bandwidth = 0 to 5Symmetrical input voltage for 3.3Vp-p output (pin 11)1-16100150220 $\mu Vr.m.s$ Maximum IF voltage level present at video outputs with selective circuit1230mVf = 38.9MHz f = 77.8MHz (2nd harmonic)Sound IF voltage level present at video outputs with selective circuit1230mVf = 5.5MHz, <u>picture carrier level</u> = 30dBDifferential gain of negative comp. video output signal for ful black to white swing404040MBInput impedance AGC min.11.4/2 $k \Omega //pF$ Picture carrier = 0dB, IF colour subcarrier level = -6dB, IF sound carrier level = -24dBInput impedance AGC min.11.4/2 $k \Omega //pF$ Herence point pin 16	- • • • • • • • • • • • •		6.5				R _w (pin 10) = 0
picture video DC output voltage111.7.51.82.1.5VDC output current11125.6VNegative yideo DC output voltage125.6VAvailable tuner control current577.5Negative gating pulse71.53Composite video output level113.3.3Video 3dB bandwidth4.2Video 3dB bandwidth810Video 3dB bandwidth810Video 3dB bandwidth810Video 3dB bandwidth1.16100Symmetrical input voltage for 3.3Vp-p output (pin 11)1.16Maximum IF voltage level present at video outputs with selective circuit11AGC range11,12Sound IF voltage level present at video outputs with selective circuit12Differential gain of negative comp. video outputs signal for ful black to white swing11Suppression of sound carrier/colour subcarrier (1.07MHz) w.r.t colour subcarrier level40Input impedance AGC min.111.4/2 1.4/1.9 $k \Omega //pF$	Peak black clamping level for	11	1 75	10	2 15		
De output current113.2Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Intr<Int	positive video DC output voltage		1.75	1.9	2.15		Poference point pin 12
Negative video DC output voltage123.0VAvailable tuner control current577.535Vp-pComposite video output level113.34.2Vp-pV11 = 5.5VDCComposite video output level113.34.2Vp-pV11 = 6.4VDCAGC range, ΔAGC 5056dBMHzVideo 3dB bandwidth81.02.0dB $\Delta AGC = 50dB$, video bandwidth = 0 to 5Video frequency response change1-16100150220 $\mu Vr.m.s$ Symmetrical input voltage for 3.3Vp-p output (pin 11)1-16100150220 $\mu Vr.m.s$ Maximum IF voltage level present at video outputs over the full AGC range11,1230mVf = 38.9MHz f = 77.8MHz (2nd harmonic)Sound IF voltage level present at video output signal for full black to white swing1230mVf = 5,5MHz, picture carrier level sound carrier levelDifferential gain of negative comp. video output signal for full black to white swing4015%Picture carrier = 0dB, IF colour subcarrier level = $-6dB$, IF sound carrier level = $-24dB$ Input impedance AGC min.11.4/2 $k\Omega/pF$ Reference point pin 16	DC output current	12		3.2			Reference point pin 13
Available function control current577.57.51.5377.5Negative gating pulse71.535 ∇_{P-P} $\nabla_{11} = 5.5 VDC$ $\nabla_{11} = 6.4 VDC$ Composite video output level113.34.2 ∇_{P-P} $\nabla_{11} = 6.4 VDC$ AGC range, ΔAGC 5056dBVideo 3dB bandwidth810MHzVideo frequency response change1.02.0dBSymmetrical input voltage for 3.3 Vp-p output (pin 11)1-16100150220 $\mu Vr.m.s$ Maximum IF voltage level present at video outputs over the full AGC range1.1,1230mVf = 38.9MHz f = 77.8MHz (2nd harmonic)Sound IF voltage level present at video outputs with selective circuit1230mVf = 5.5MHz, picture carrier level sound carrier level= 30dBDifferential gain of negative comp. video output signal for full black to white swing4015%Picture carrier = 0dB, IF colour subcarrier level = -6dB, IF sound carrier level = -24dBPicture carrier = 0dB, IF colour subcarrier level = -6dB, IF sound carrier level = -24dBInput impedance AGC min.11.4/2 $k \Omega //pF$ $k \Omega //pF$	Available function of a standard available function			5.0 7 E			10dB often error of turner control action
Negative gating pulse71.535 V_{PP} $V_{11} = 5.5VDCComposite video output level11113.3V_{PP}V_{11} = 6.4VDCAGC range, \triangle AGC5056dBVideo 3dB bandwidth810MHzVideo frequency response change1.02.0dBSymmetrical input voltage for3.3Vp-p output (pin 11)1-16100150220Maximum IF voltage level presentat video outputs over the fullAGC range1.111.16100150Sound IF voltage level present atvideo output signal forfull black to white swing1230mVf = 38.9MHzf = 77.8MHz (2nd harmonic)Differential gain of negativecomp. video output signal forfull black to white swing1230mVf = 5.5MHz, picture carrier levelsound carrier levelInput impedanceAGC max.AGC min.11.4/2k \Omega/pFk \Omega/pF$	Available tuner control current	5	1 =	7.5	F		TOOB after onset of tuner control action
Composite video dutput level113.3 ∇P_{P} $\nabla P_{11} = 3.5 VDC$ AGC range, ΔAGC 5056dBVideo 3dB bandwidth810MHzVideo frequency response change1.02.0dBSymmetrical input voltage for 3.3Vp-p output (pin 11)1-16100150220Maximum IF voltage level present at video outputs over the full AGC range1.111.16100150220Sound IF voltage level present at video outputs with selective circuit1230mVf = 38.9MHz f = 77.8MHz (2nd harmonic)Differential gain of negative comp, video output signal for full black to white swing1230mVf = 5.5MHz, picture carrier level sound carrier levelInput impedance AGC max. AGC min.11.4#2 $k \Omega/pF$ k Ω/pF	Regative gating pulse	11	1.5	3	5	Vp-p	
AGC range, $\triangle AGC$ 5056dBVideo 3dB bandwidth810MHzVideo frequency response change1.02.0dBSymmetrical input voltage for 3.3Vp-p output (pin 11)1-16100150220 μ Vr.m.sMaximum IF voltage level present at video outputs over the full AGC range1.12100150220 μ Vr.m.sSound IF voltage level present at video outputs with selective circuit1230mVf = 38.9MHz f = 77.8MHz (2nd harmonic)Differential gain of negative comp. video outputs signal for full black to white swing1230mVf = 5.5MHz, picture carrier level sound carrier levelSuppression of sound carrier/colour subcarrier (1.07MHz) w.r.t colour subcarrier level4015%MBInput impedance AGC max. AGC min.11.4#2 $k \Omega/pF$ Picture carrier = 0dB, IF colour subcarrier level = $-24dB$	Composite video output level			3.3 4.2		Vp-p Vp-p	$V_{11} = 5.5VDC$ $V_{11} = 6.4VDC$
Video 3dB bandwidth Video frequency response change8101.02.0MHz dB $\Delta AGC = 50dB$, video bandwidth = 0 to 5Symmetrical input voltage for 3.3Vp-p output (pin 11)1.16100150220 $\mu Vr.m.s$ $\Delta AGC = 50dB$, video bandwidth = 0 to 5Maximum IF voltage level present at video outputs over the full AGC range1.16100150220 $\mu Vr.m.s$ f = 38.9MHz f = 77.8MHz (2nd harmonic)Sound IF voltage level present at video outputs with selective circuit1230mVf = 5.5MHz, picture carrier level sound carrier level = 30dBDifferential gain of negative comp. video output signal for full black to white swing Suppression of sound carrier/colour subcarrier (1.07MHz) w.r.t colour subcarrier level4015%Input impedance AGC max. AGC min.11.4#2 1.4#1.9 $k \Omega / pF$ Picture carrier = 0dB, IF colour subcarrier level = $-24dB$ Reference point pin 16	AGC range, ∆AGC		50	56		dB	
Video frequency response change1.02.0dB $\Delta AGC = 50dB$, video bandwidth = 0 to 5Symmetrical input voltage for 3.3Vp-p output (pin 11)1-16100150220 $\mu Vr.m.s$ MHzMaximum IF voltage level present at video outputs over the full AGC range11,12100150220 $\mu Vr.m.s$ f = 38.9MHz f = 77.8MHz (2nd harmonic)Sound IF voltage level present at video outputs with selective circuit1230mVf = 5.5MHz, $\frac{picture carrier level}{sound carrier level} = 30dBDifferential gain of negativecomp. video output signal forfull black to white swingSuppression of sound carrier/coloursubcarrier (1.07MHz) w.r.tcolour subcarrier level4015%Input impedanceAGC max.AGC min.11.4#21.4#1.9k \Omega / pFPicture carrier = 0dB, IF colour subcarrierlevel = -24dBReference point pin 16$	Video 3dB bandwidth		8	10		MHz	
Symmetrical input voltage for 3.3Vp-p output (pin 11)1-16 100100150220 μ Vr.m.sMaximum IF voltage level present at video outputs over the full AGC range11,12100150220 μ Vr.m.sSound IF voltage level present at video outputs with selective circuit11,1230mV 50f = 38.9MHz f = 77.8MHz (2nd harmonic)Differential gain of negative comp. video output signal for full black to white swing1230mVf = 5.5MHz, sound carrier level = sound carrier level = 30dBSuppression of sound carrier/colour subcarrier (1.07MHz) w.r.t colour subcarrier level4015%BInput impedance AGC max. AGC min.11.4#2 1.4#1.9 $k \Omega/pF$ Picture carrier = 0dB, IF colour subcarrier level = -24dB Reference point pin 16	Video frequency response change			1.0	2.0	dB	\triangle AGC = 50dB, video bandwidth = 0 to 5 MHz
Maximum IF voltage level present at video outputs over the full AGC range11,1230 mV $f = 38.9MHz$ f = 77.8MHz (2nd harmonic)Sound IF voltage level present at video outputs with selective circuit1230 mV $f = 5.5MHz$, $\frac{picture carrier level}{sound carrier level} = 30dBDifferential gain of negativecomp. video output signal forfull black to white swing123015%Suppression of sound carrier/coloursubcarrier (1.07MHz) w.r.tcolour subcarrier level4015%Input impedanceAGC max.AGC min.11.4#21.4#1.9k\Omega/pFPicture carrier = 0dB, IF colour subcarrierlevel = -24dBReference point pin 16$	Symmetrical input voltage for 3.3Vp-p output (pin 11)	1-16	100	150	220	μVr.m.s	
AGC range11,1230 mV f = 38.9MHzSound IF voltage level present at video outputs with selective circuit1230 mV f = 38.9MHzDifferential gain of negative comp. video output signal for full black to white swing1230 mV f = 5.5MHz, $\frac{\text{picture carrier level}}{\text{sound carrier level}} = 30dBSuppression of sound carrier/coloursubcarrier (1.07MHz) w.r.tcolour subcarrier level4015%Input impedanceAGC max.AGC min.11.4#21.4#1.9k\Omega/pFPicture carrier = 0dB, IF colour subcarrierlevel = -24dBReference point pin 16$	Maximum IF voltage level present at video outputs over the full						
Sound IF voltage level present at video outputs with selective circuit123050mVf = 77.8MHz (2nd harmonic)Differential gain of negative comp. video output signal for full black to white swing123015 mV f = 5.5MHz, $\frac{\text{picture carrier level}}{\text{sound carrier level}} = 30dBSuppression of sound carrier/coloursubcarrier (1.07MHz) w.r.tcolour subcarrier level4015\%BPicture carrier = 0dB, IF colour subcarrierlevel = -6dB, IF sound carrier level =-24dB-24dBInput impedanceAGC max.AGC min.11.4/21.4/1.9k\Omega/pFReference point pin 16$	AGC range	11,12			30	mV	f = 38.9MHz
Sound IF voltage level present at video outputs with selective circuit1230 mV $f = 5.5 MHz, \frac{picture carrier level}{sound carrier level} = 30 dBDifferential gain of negativecomp. video output signal forfull black to white swing123015mVf = 5.5 MHz, \frac{picture carrier level}{sound carrier level} = 30 dBSuppression of sound carrier/coloursubcarrier (1.07MHz) w.r.tcolour subcarrier level4015\%dBPicture carrier = 0dB, IF colour subcarrierlevel = -6dB, IF sound carrier level =-24dBInput impedanceAGC max.AGC min.11.4/21.4/1.9k\Omega/pFReference point pin 16$	-				50	mV	f = 77.8MHz (2nd harmonic)
Differential gain of negative comp. video output signal for full black to white swing 15 % Suppression of sound carrier/colour subcarrier (1.07MHz) w.r.t colour subcarrier level 40 15 % Input impedance AGC max. AGC min. 1 1.4#2 $k\Omega/pF$ Reference point pin 16	Sound IF voltage level present at video outputs with selective circuit	12	30			mV	f = 5.5MHz, picture carrier level sound carrier level = 30dB
Suppression of sound carrier/colour 40 40 dB Picture carrier = 0dB, IF colour subcarrier subcarrier (1.07MHz) w.r.t 40 40 dB Picture carrier = 0dB, IF colour subcarrier colour subcarrier level 1 40 dB Picture carrier = 0dB, IF colour subcarrier Input impedance 1 1.4#2 $k\Omega/pF$ Reference point pin 16 AGC max. 1.4#1.9 $k\Omega/pF$ Reference point pin 16	Differential gain of negative comp. video output signal for full black to white swing				15	%	
colour subcarrier level 40 dB Picture carrier = 0dB, IF colour subcarrier level = $-6dB$, IF sound carrier level = $-24dB$ Input impedance 1 1.4/2 $k\Omega/pF$ AGC max. 1.4/1.9 $k\Omega/pF$	Suppression of sound carrier/colour subcarrier (1.07MHz) w.r.t						
Input impedance 1 -24dB Reference point pin 16 AGC max. 1.4#2 kΩ/pF AGC min. 1.4#1.9 kΩ/pF	colour subcarrier level		40			dB	Picture carrier = 0dB, IF colour subcarrier level =6dB, IF sound carrier level =
Input impedance1Reference point pin 16AGC max.1.4/2 $k\Omega/pF$ AGC min.1.4/1.9 $k\Omega/pF$							-24dB
AGC max. 1.4//2 kΩ//pF AGC min. 1.4//1.9 kΩ//pF	Input impedance	1		"-			Reference point pin 16
	AGC max. AGC min.			1.4//2 1.4//1.9		kΩ∥pF kΩ∥pF	

CONSUMER TV CIRCUITS

TDA 2522/3 COLOUR DEMODULATOR COMBINATION

The TDA2522 and TDA2523 are integrated synchronous demodulators for colour television receivers. The devices incorporate an 8.8MHz oscillator followed by a divider giving two 4.4MHz reference signals, a keyed burst phase detector for optimum noise behaviour, an ACC detector and amplifier, a colour killer, two synchronous demodulators for the (B-Y) and (R-Y) signals, a PAL switch and a PAL flip-flop with internal identification.

The symmetrical demodulators include integrated capacitors to reduce unwanted carrier signals at the outputs which are taken from temperature-compensated emitter followers. The outputs of the TDA2522 are suitable for use with the TDA2530. The TDA2523 outputs are inverted for use with a direct transistor drive.

QUICK REFERENCE DATA

Supply Voltage (pin 11):

Supply Current:

 $\mathcal{C}_{n,2}$

Current: 40mA typ.

Colour Difference Signals: (R -Y) (pin 3): > 2.4V p-p (G -Y) (pin 2): >1.35V p-p (B -Y) (pin 1): > 3V p-p

Fig. 1 Pin connections

12V tvp.

Fig.2 Block diagram

ELECTRICAL CHARACTERISTICS

Test conditions unless (otherwise stated): Supply voltage, pin 11 = +12VTamb = +25°C Measurements referred to pin 4

Charateristic	Pin	V Min.	'alue Typ.	Max.	Units	Conditions
Demodulator						
Ratio of demodulated signals : BY/RY GY/RY GY/RY	1/3 2/3 2/3		1.78 0.85 0.17		- ; - ; - ;	See note 1 See note 2
Colour difference outputs: (R –Y) (G –Y) (B –Y)	3 2 1	2.4 1.35 3			Vр–р Vр–р Vр–р	
Chrominance input signal (including burst) : RY BY	6 5		500 350		mVp-p mVp-p	See note 3
Colour difference signal output impedances : (R –Y) (G –Y) (B –Y)	3 2 1		250 250 250		Ω Ω Ω	
H/2 ripple at R – Y O/P	3			10	mVp-p	
Blanking and keying pulse : Burst keying active for Burst keying inactive for Blanking active for Blanking inactive for	15 15 15 15	7.5 2		6.5 1	Vр–р Vр–р Vр–р Vр–р	
Reference section					- F F	
Phase difference between reference and burst				± 5	Deg.	Crystal frequency deviation
Overall holding range Burst signal input Oscillator input resistance Oscillator input capaci	5–6 10		±500 0.25 270		Hz Vp–p Ω	Using typical crystal Keying pulse width = 4µs,
tance Oscillator output resistance ACC reference voltage	10 9 12		200 7		pF Ω V	See note 5
phase	14		5.5		v)
ACC voltage with zero burst	14		7.0		V	Burst = 0.25Vp-p
voltage range	13	0.5		5.0	v	l₁₃ < ±200µA
Colour killer			- - -			
via pin 14: Colour off Colour on Via pin 16:	14 14	6		5.6	v v	
Colour off Colour on Colour unkill delay	16 16	7	20	5	V V ms/µF	See note 6

NOTES

1. The demodulators are driven by a chrominance signal of equal amplitude for the (R-Y) and (B-Y) components. The phase of the (R-Y) chrominance signal equals the phase of the (R-Y) reference signal. The same holds for the (B-Y) signals. 2. As note 1, but with the phase of the (R-Y) reference signal reversed. 3. Colour bar with 75% saturation.

4. The burst amplitude is kept constant by ACC action, but depends linearly on the keying pulse width.

5. To be established.

6. The delay depends on the value of Cd (see Fig. 2)

FUNCTIONAL DESCRIPTION

Functions liste

- 61	unctions listed by pin r	lumber.
	TDA2522	TDA2523
1.	-(B-Y) signal output	(B-Y) signal output
2.	- (G-Y) signal output	(G-Y) signal output

(R-Y) signal output

3. - (R-Y) signal output

These outputs are of low impedance from temperature compensated emitter follower stages that require external loads of $10k\Omega$. Internal filtering of the colour difference output signals to give a -3dB bandwidth of 1MHz allows the three signals to be fed directly to the luminance matrix. The TDA2522 may be AC coupled to the TDA2530, and the TDA2523 may be used with direct transistor drive.

4. Negative supply (Ground) 5. Chrominance B – Y input signal

An input signal of approximately 350mV p-p (colour bars) is required at this pin. The B-Y component of colour burst must be included with the input chrominance signal.

6. Chrominance R - Y input signal

An input signal of approximately 500mV p-p (colour bars) is required, including the R-Y colour burst component.

7. Reference oscillator APC loop filter

8. Reference oscillator APC loop filter

Between pins 7 and 8 are connected the APC loop low pass filter components. The difference voltage between these pins is connected internally to the oscillator reactance stage.

9. Oscillator feedback

10. Oscillator feedback

A series network consisting of the 8.8MHz crystal and an adjustable tuning capacitor is connected between pins 9 and 10. Division from the 8.8MHz oscillator within the IC produces the 4.4MHz quadrature reference carriers which are then applied to the colour demodulators.

11. Positive 12V supply

The maximum voltage must not exceed 14V.

12. ACC hold capacitor

The capacitor connected from this pin to ground is normally charged to a potential of about 7V.

13. ACC output potential

An output potential varying inversely with the input colour burst amplitude is available at pin 13. Maximum ACC gain of the TDA2560 is provided when the ACC potential from pin 13 of the device is greater than about 1.4V.

14. ACC hold capacitor

The capacitor connected from this pin to ground is normally charged to a potential of 5.5V. On monochrome reception the potential will be 7.0V and while identing it may instantaneously increase to about 8V. A 1000 resistor may be connected in series with the capacitor from pin 14, see pin 15.

15. Burst gating and blanking pulse input.

The two-level positive pulse required at this pin is used for burst gating and flip-flop triggering, at a sampled level of 7V. A negative going pulse of about 100mV p-p, derived from the colour burst, may be inspected across a 100Ω resistor in series with the capacitor from pin 14 to ground, should the sandcastle pulse shape require some adjustment. At a level of about 1.5V the pulse width should be suitable for chroma blanking.

16. Killer delay capacitor

The value of a capacitor connected from pin 16 to ground determines the delay of un-killing. By this means the state of continuous switching of the killer with marginal signals, may be avoided. Connecting pin 16 to ground unkills the system.

ABSOLUTE MAXIMUM BATINGS

Supply voltage (pin 1)	14V
Total power dissipation	600mW
Storage temperature	-55°C to +125°C
Operating ambient temperature	-10°C to +60°C

CONSUMER TV CIRCUITS

TDA2530/2

RGB Matrix Preamplifier (with clamps)

The TDA2530 and TDA2532 are integrated RGB matrix preamplifiers for colour television receivers, incorporating a matrix preamplifier (for RGB cathode drive of the picture tube) with clamping circuits. This integrated circuit has been designed to be

This integrated circuit has been designed to be driven from the TDA2522 synchronous demodulator and oscillator IC.

The TDA2532 has been designed for use with onscreen data display systems.

QUICK REFERENCE DATA

- Supply Voltage (pin 9): 12V typ.
- Operating Ambient Temperature Range : -10 to +60°C
- Luminance Input Resistance (pin 1): 100kΩ min
- Colour Difference Input Currents (pins 2, 4 & 6): Unclamped 2 µA typ
 - During Clamping -0.2 to +0.2mA
- Clamping Pulse Input Current (pin 8): 20µA max.

Fig. 1 Pin connections (top view)

- Gain of RGB Preamplifiers:
 - OdB typ.
 - Gain DC Adjustment Range: ±3dB typ.
- Error Amplifier Gain (Conductance): 20mA/V tvp.
- Feedback Input Currents (pins 11, 13 & 15): 2µA typ.
- Output Current Swing (pins 10, 12 & 14): -4.4 to +4.4mA

Fig. 2 TDA2530/2 block diagram

TDA2530/TDA2532

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

 $\begin{array}{l} \mbox{Supply voltage (pin 9) = +12V} \\ \mbox{Luminance input (pin 1) = 1.5V} \\ \mbox{T}_{amb} = +25^{\circ}C \\ \mbox{Measurements refer to pin 16} \\ \mbox{Test circuit Fig. 3} \end{array}$

	D .		Value		Value			
Characteristic	Pin	Min.	Typ.	Max.	Units	Conditions		
Current consumption Luminance input Black level Black-to-white input voltage Input resistance Colour Difference Input	9 1	100	50 1.5 1.0		mA V Vp-p kΩ			
Input signals (R-Y) (G-Y) (B-Y) Input currents Input currents during clamping Clamp Pulse Input for DC Feedback	2 4 6 2, 4, 6 2, 4, 6 8	±0.2	1.4 0.82 1.78 2	4	Vp-р Vp-р Vp-р µA mA	See Note 1		
Clamping voltage ON OFF Clamping current ON		7.5 0		12 5.5	V V Au	} See Note 2		
OFF Feedback Input DC level during clamping Gain Adjustment for Colour Drive Adjustment voltage range	11, 13, 15 3 5 7	0	0.5V9	20	μA V)		
Adjustment voltage for nominal gain Nominal gain between colour difference inputs, luminance input and colour feedback inputs	3, 5, 7 11, 13, 15		5 0	10	∨́ dВ	See Note 4		
Adjustment range of nominal gain Differential Amplifier	3, 5, 7	±3			dB	At = Δ V 3, 5, 7, = \pm 5V		
Feedback input current Error amplifier gain Output current swing Integrated load resistance Output bias voltage	11, 13, 15 10, 12, 14 10, 12, 14 10, 12, 14 10, 12, 14		2 20 4,4 680 8		μΑ mA/V mA Ω V	See Note 3 See Note 3 and applications information		
Data blanking (TDA2532 only)	7		≧1		V	Pins 10, 12, 14 go to +6V		

NOTES

1. The allocation of -(R-Y), -(G-Y) and -(B-Y) signals to pins 2, 4 and 6 respectively, is not mandatory as all three channels are identical.

2. Switching from clamping ON to OFF occurs at about 6V.

3. The integrated load resistors include series diodes; this means that the resistors can be ignored when V₁₀, V₁₂, V₁₄ > V₉. Under this condition, external load resistors must be chosen such that the current is nominally 4.4mA. See Fig.3.

4. The TDA2532 uses pin 7 for data blanking, the gain of one channel is therefore internally preset.

APPLICATIONS INFORMATION (fig 3)

The clamping level, VcL of the video output stages, with set clamping level potentiometers in their midpositions, is given by:

$$V_{CL} = V_9 (1 + \frac{R1}{R2} - \frac{R1}{R3})$$

The gain of the video output stages is given by: Gain = 1 + $\frac{R1}{R2}$ + $\frac{R1}{R3}$ + $\frac{R1}{R4}$

Attention should be given to earth paths, avoiding common impedances between the input (decoder) side and the output stages.

Printed track area connected to the feedback pins should be kept to a minimum.

To ensure a matched performance of the video output stages, a symmetrical layout of three stages should be employed.

Fig. 3 TDA2530/2 applications and test circuit

FUNCTIONAL DESCRIPTION

Functions listed by pin number

1. Luminance signal input.

A 1V black to white positive going luminance input signal is required. Blanking level should be at 1.5V and black level at 1.7V

2. -(R-Y) input signal

The input signal is required to be AC coupled from a low impedance source such as the TDA2522. The coupling capacitor also acts as a clamp capacitor for the TDA2530/2 red output. As the colour difference input impedance is at least 100kΩ, low value coupling capacitors may be used.

3. Red drive adjustment.

A gain variation of the red channel of at least ±3dB about the nominal, is obtained as the DC potential at this pin varies by \pm 5V about the nominal of 5V. If no connection is made to a gain controlling pin the channel concerned assumes the nominal gain.

- 4. -(G-Y) input signal (see pin 2)
- 5. Green drive adjustment (see pin 3)
- 6. -(B -Y) input signal (see pin 2)
 7. TDA2530: Blue drive adjustment (see pin 3) TDA2532: Data blanking input.

When this pin is taken above 1V the colour output signals on pins 10, 12 and 14 are inhibited, the outputs being clamped to 6V.

8. Clamp pulse input

A positive going line pulse input is required and the pulse should exceed a threshold DC level set by the TDA2530/2 of 7.5 V. An input current of about 0.2mA is required. A maximum current of 1mA should not be exceeded.

9. Positive 12V supply.

10. Blue signal output

11. Blue signal feedback

The signal gain of both the video output stages and IC amplifier are stabilised by the feedback circuits. DC clamping is achieved by sampling of the feedback level during blanking. The black level potentials at the collectors of the video output stages may be varied independently by adjustable DC current sources applied to the feedback input pins. The DC levels at these pins are such that the feedback resistor and a resistor network between the 12V supply and earth provide a potential of 6V during blanking. 12. Green signal output

13. Green signal feedback (see pin 11)

- 14. Red signal output
- 15. Red signal feedback (see pin 11)

16. Negative supply (earth)

ABSOLUTE MAXIMUM RATINGS

Voltages Supply voltage (V9) 15V Pin 1, 2, 3, 4, 5, 6 & 7 OV to Va Pin 8 V۹ Pin 10 V9 to V9 + 3V Pin 12 V13 to V9 + 3V Pin 14 V15 to V9 + 3V Pins 11, 13 and 15 0.3V9 to V9 Current Pin 8 1mA Thermal Total power dissipation 1W Storage temperature -55°C to +125°C Operating ambient temperature -10°C to +60°C

248

.

TV CIRCUITS

TDA2540 TDA2541 TELEVISION IF AMPLIFER AND DEMODULATOR (TDA2540 for NPN tuners, TDA2541 for PNP tuners)

The TDA2540 and TDA2541 are IF amplifier and demodulator circuits for colour and monochrome television receivers using NPN and PNP tuners respectively. The two circuits are in other respects identical. A VCR switch is incorporated for switching off the video signal when inserting a VCR playback signal.

FEATURES

- Gain-Controlled Wideband Amplifier, Providing Complete IF Gain
- Synchronous Demodulator
- White Spot Inverter
- Video Preamplifier with Noise Protection
- DC Controlled AFC
- AGC Circuit with Noise Gating
- Tuner AGC Output
- VCR Switch

Fig. 1 Pin connections (top view)

QUICK REFERENCE DATA

- Supply Voltage (pin 11): 12V typ.
- Supply Current: 50mA typ.
- IF Input Voltage at f = 38.9MHz
- (pins 1 & 16): 100 µV RMS typ.
- Video Output Voltage (pin 12): 3V typ.
- IF Voltage Gain Control Range: 64dB typ.
 - Signal-to-noise Ratio at $V_{in} = 10mV$:

58dB typ.

AFC O/P Voltage Swing for $\Delta f = 100 \text{kHz} \text{ (pin 6)}$:

10V min.

Fig. 2 TDA2540/TDA2541 block diagrams

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): Supply voltage (pin 11) = 12V $T_{amb} = +25^{\circ}C$ Measurements referred to pin 13 Test circuits Fias. 9 & 10

Characteristic	Din	Value			Unite	Conditions
Characteristic	FIN	Min.	Тур.	Max.	Units	
Supply Current			50		mA	
Supply voltage range	11	10.2	12	13.8	V	
IF input voltage for onset of AGC	1–16		100	150	μV RMS	f = 38.9 MHz
Differential input impedance	1–16		2//2		kΩ// pF	
Zero-signal output level	12	5.7	6.0	6.3	V İ	
Top sync. output level	12	2.9	3.07	3.2	V	
AFC output voltage swing	6	10	11		V I	$\Delta f = 100 \text{kHz}$
IF voltage control range			64		dB	
Signal-to-noise ratio			58		dB	V _{in} = 10mV, See Note 1
Video amplifier 3dB bandwidth			6		MHz	
Differential gain			4	10	%	
Differential phase	1		2	10	deg.	
Carrier signal at video output			4	30	mV	
2nd harmonic of carrier at video						
output			20	30	mV	
Change of frequency at AFC output			1			
voltage swing of 10V			100	200	kHz	
Intermodulation at 1.1 MHz		ł				
Blue		46	60		dB	
Yellow		46	50		dB	See Note 2 and Figs 3 and 4
Intermodulation at 3.3MHz		46	54	1	dB)
AFC switches off at :	6		Į	2.5	V	
VCR switches off at	14			1.1	V	
White spot inverter threshold			6.6		V	
White spot insertion level			4.7		V	See Fig 5
Noise inverter threshold level		1	1.8		V I	
Noise insertion level	1		3.8		V	
Typical tuner AGC output current	4	0		10	mA	
Tuner AGC output voltage	4			0.3	V	$1_4 = 10 m A$
Tuner AGC output leakage current	4			15	μA	$V_{14} = 3V, V_4 = 12V$

NOTES :

1. $S/N = \frac{V_{out} \text{ black-to-white}}{V_{in} \text{ at bandwidth} = 5MHz}$ 2. Intermodulation at 1.1MHz = 20 log $\frac{V_{out} \text{ at } 4.4MHz}{V_{out} \text{ at } 1.1MHz}$ 3. Intermodulation at 3.3MHz = 20 log $\frac{V_{out} \text{ at } 4.4MHz}{V_{out} \text{ at } 3.3MHz}$

Fig. 3 Input conditions for intermodulation measurements - standard colour bar with 75 percent contrast

Fig. 4 Test set-up for intermodulation

Fig. 5 Video output waveform showing white spot and noise inverter threshold levels

Fig. 6 AFC output voltage (pin 6) as a function of frequency

Fig. 8 Signal-to-noise ratio as a function of input voltage

APPLICATIONS INFORMATION

Fig. 9 TDA2540 typical application circuit

Fig. 10 TDA2541 typical application circuit

ABSOLUTE MAXIMUM RATINGS

Supply voltage	13.8V
Tuner AGC voltage	12V
Storage temperature	-55°C to +125°C
Operating ambient temperature	-10°C to +60°C

CONSUMER

TV CIRCUITS

TDA2560

LUMINANCE AND CHROMINANCE CONTROL COMBINATION

The TDA2560 is an integrated circuit for use in colour television receiver decoding systems, and consists of a luminance amplifier and a chrominance amplifier. The luminance amplifier has a low input impedance so that luminance delay line matching is very easy. The chrominance amplifier has a combined chroma and burst output, the burst signal amplitude unaffected by contrast and saturation control.

QUICK REFERENCE DATA

- Supply Voltage (pin 8) 12V typ.
 Supply Current 45mA typ.
 Luminance Signal Input Current (Black-to-White Value) (pin 14) 0.2mA typ.
- Chrominance Input Signal (pins 2 & 1)
 4 to 80 mVp-p
 Luminance Output Signal at
- Nominal Contrast (Black-to-White Value) (pin 10) 3V typ. ■ Chrominance Output Signal at
- Nominal Contrast and Saturation and 1.25Vp-p Burst Output (pin 6) 2.5Vp-p typ. Contrast Control Range >20dB
- Saturation Control Range
 - Saturation Control Range

Fig. 1 Pin connections (top view)

FEATURES

Luminance Amplifier

- DC Contrast Control
- DC Brightness Control
- Black Level Clamp
- Blanking
- Additional Video O/P with +ve Sync.

Chrominance Amplifier

- Gain Control Amplifier
- Chrominance Gain Control Tracked with Contrast Control
- Separate DC Saturation and Contrast Controls
- Direct Delay Line Drive

> 20 dB

Fig. 2 TDA2560 block diagram

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated): Supply voltage (pin 8) = +12V $T_{amb} = +25^{\circ}C$ Gain setting resistor, Rg, (pin 13) = $2.7k\Omega$ Measurements referred to pin 5 Test circuit Fig. 5

		Value				
Characteristic	Pin	Min.	Тур.	Max.	Units	Conditions
Supply voltage range Supply current	8 8	10	12 45	14	V mA	Load on pin $6 = 1.5k\Omega$
Permitted supply line hum	8			100	mApp	no load on pins 10 and 15
Input signal current Input bias current	14 14		0.2 0.25		mA mA	Black-to-white value
Input impedance Gain Contrast control range	14 13	20	150		Ω dB	See operating Note 1
Contrast control voltage range Contrast control current Black level range	16 16 10	1		8 3	μA V	See Fig. 3
Voltage range Brightness control current	11 11	1		3 20	V µA	V11>4V
Black level temperature stability Black level stability when			0.1		mV/°C	
changing contrast Bandwidth (3dB)		5			MHz	See functional description (pin 10) At nominal contrast (Max contrast setting3dB)
Output voltage Output to sync separator Black level clamp pulse	10 15 7		3 3.4		V Vp-p	Black-to-white value 114 = 0.2mA black-to-white See Operating Note 2
ON OFF		7		V8 5	V V	
ON OFF	9	2.5		4.5 1.5	V	For OV on pin 10
ON OFF Chrominance Amplifier		. 6		V8 4.5	v v	For 1.5V on pin 10 See note 1
Input signal Chrominance output signal	2–1	4		80	mVp–p	
at nominal contrast and saturation level Max, chrominance output Bandwidth (3dB)	6 6		2 4.6 6		Vp–p V MHz	See note 2
Ratio of burst and chrominance at nominal contrast and saturation	2				N	See Operating Notes 4 and 5
ACC starting voltage ACC range Tracking between luminance	3	30	1.2		dB	See Operating Note 6
contrast control Saturation control range		20	±1		dB dB	10dB control
range Gating pulse	4 7	22		5	v	See Fig. 4
OFF Width		8		1	V µs	
Signal-to-noise ratio Phase shift between burst and chrominance		46		5	dB deg	

NOTES :

1, All'figures for the chrominance signals are based on a colour bar signal with 75 per cent saturation : i.e. burst-to-chrominance ratio is 1 :2. 2. At a burst signal of 1V peak-to-peak : see also Operating Notes 4 and 5.

Fig. 3 Contrast control of luminance and chrominance amplifier

FUNCTIONAL DESCRIPTION

Functions listed by pin number.

1. and 2. Balanced chrominance input signal

This is derived from the chrominance signal bandpass filter, designed to provide a push-pull input. A signal amplitude of at least 4mV peak-to-peak is required between pins 1 and 2. The chrominance amplifier is stabilized by an external feedback loop from the output (pin 6) to the input (pins 1 and 2). The required level at pins 1 and 2 will be 3V.

3. ACC input

A negative-going potential, starting at +1.2V, gives a 40dB range of ACC. Maximum gain reduction is achieved at an input voltage of 500mV.

4. Chrominance saturation control

A control range of +6dB to -14dB is provided over a range of DC potential on pin 4 from +2 to +4V. The saturation control is a linear function of the control voltage.

5. Negative supply (ground)

6. Chrominance signal output

For nominal settings of saturation and contrast controls (max. – 6dB for saturation, and max. – 3dB for contrast) both the chroma and burst are available at this pin, and in the same ratio as at the input pins 1 and 2. The burst signal is not affected by the saturation and contrast controls. The ACC circuit of the TDA2522 will hold the colour burst amplitude constant at the input of the TDA2522. As the PAL delay line is situated here between the TDA2560 and TDA2522 there may be some variation of the nominal 1V peak-to-peak burst output of the TDA2560, according to the tolerances of the delay line. An external network is required from pin 6 of the TDA2560 to provide DC negative feedback in the chroma channel via pins 1 and 2.

7. Burst gating and clamping pulse input

A two-level pulse is required at this pin to be used for burst gate and black level clamping. The black level clamp is activated when the pulse level is greater than 7V. The timing of this interval should be such that no appreciable encroachment occurs into the sync pulse on picture line periods during normal operation of the receiver. The burst gate, which switches the gain of the chroma amplifier to maximum, requires that the input pulse at pin 7 should be sufficiently wide (at least 8µs) at the actuating level of 2.3V.

Fig. 4 Saturation control of chrominance amplifier

8. +12V power supply

Correct operation occurs within the range 10 to 14V. All signal and control levels have a linear dependency on supply voltage but, in any given receiver design, this may be restricted due to consideration of tracking between the power supply variations and picture contrast and chroma levels.

9. Flyback blanking input waveform

This pin is used for blanking the luminance amplifier. When the input pulse exceeds the +2.5V level, the output signal is blanked to a level of about 0V. When the input exceeds a +6V level, a fixed level of about 1.5V is inserted in the output. This level can be used for clamping purposes.

10. Luminance signal output

An emitter follower provides a low impedance output signal of 3V black-to-white amplitude at nominal contrast setting having a black level in the range 1 to 3V. An external emitter load resistor is not required.

The luminance amplitude available for nominal contrast may be modified according to the resistor value from pin 13 to the +12V supply. At an input bias current 114 of 0.25mA during black level the amplifier is compensated so that no black level shift more than 10V occurs at contrast control. When the input current deviates from the quoted value the black level shift amounts to 100mV/mA.

11. Brightness control

The black level at the luminance output (pin 10) Is identical to the control voltage required at this pin. A range of black level from 1 to 3V may be obtained.

12. Black level clamp capacitor

13. Luminance gain setting resistor

The gain of the luminance amplifier may be adjusted by selection of the resistor value from pin 13 to +12V. Nominal luminance output amplitude is then 3V black-to-white at pin10 when this resistor is 2.7k Ω and the input current is 0.2mA black-to-white. Maximum and minimum values of this resistor are 3.9k Ω and 1.8k Ω .

14. Luminance signal input

A low input impedance in the form of a current sink is obtained at this pin. Nominal input current is 0.2mA

TDA2560

black-to-white. The luminance signal may be coupled to pin 14 via a DC blocking capacitor and, in addition, a resistor employed to give a DC current into pin 14 at black level of about 0.25mA. Alternatively DC coupling from a signal source such as the TDA2541 may be employed.

15. Luminance signal output for sync separator purposes

A luminance signal output with positive-going sync is available which is not affected by the contrast control or the value of resistor at pin 13. This voltage is intended for drive of sync separator circuits. The output amplitude is 3.4V peak-to-peak when the luminance signal input is 0.2mA black-to-white.

16. Contrast control

With 3V on this pin the gain of the luminance channel is such that 0.2mA black-to-white at pin 14 gives a luminance output on pin 10 of 3V black-to-white. The nominal value of $2.7k \Omega$ is then assumed for the resistor from pin 13 to the +12V supply. The variation of control potential at pin 16 from 2 to 4V gives --17 to +3dB gain variation of the luminance channel. A similar variation in the chrominance channel occurs in order to provide correct tracking between the two signals.

Fig. 5 Application and test circuit

ABSOLUTE MAXIMUM RATINGS

Supply voltage	14V
Total power dissipation	930mW
Storage temperature	-55°C to +125°C
Operating ambient temperature	-10°C to +65°C

OPERATING NOTES

1. The gain of the luminance amplifier can be adjusted, by setting the gain of the contrast control circuit with selection of the discrete resistor R₆ (see Fig. 5). This circuit configuration has been chosen to reduce the spread of the gain to a minimum (main cause of spread is the spread of the ratio of the delay line matching resistors and the resistor R₆). At R₆ = $2.7 \text{K}\Omega$ the output voltage at nominal contrast (maximum --3dB) is 3V black-to-white for an input current 0.2mA black-to-white

2. The pulse applied to pin 7 is used for gating of the chrominance amplifier and black level clamping. The latter function is actuated at a +7V level. The input pulse must have such an amplitude that the clamping circuit is active only during the back porch of the blanking interval. The gating pulse switches the gain of the chroma amplifier to maximum during the flyback time, when the pulse rises above 2.3V and switches it back to normal setting when the pulse falls below 1V.

3. The blanking pulse (pin 9) is used for blanking the luminance amplifier. When the pulse exceeds the 2.5V level the output signal is blanked to a level of about OV. When the input exceeds a +6V level a fixed level of typ. +1.5V is inserted in the output signal. This level can be used for clamping purposes.

4. The chrominance and burst signal are both available on pin 6. The burst signal is not affected by the contrast and saturation control and is kept constant by the ACC circuit of the TDA2522. The output of the delay line matrix circuit, which is the input of the TDA2522, is thus automatically compensated for the insertion losses. This means that the output signal of the TDA 2560 is determined by the insertion losses of the delay line. At nominal contrast and saturation setting the ratio of burst to chrominance signal at the output is typically indentical to that at the input.

6. A negative-going control voltage gives a decrease in gain.

TDA2590

LINE OSCILLATOR COMBINATION

The TDA2590 is an integrated line oscillator circuit for colour television receivers using thyristor or transistor line deflection output stages.

The circuit incorporates a line oscillator which is based on the threshold switching principle, a line deflection output stage capable of direct drive of thyristor deflection circuits, phase comparison between the oscillator voltage and both the sync pulse and line flyback pulse. Also included on the chip is a switch for changing the filter characteristic and the gate circuit when used for VCR.

Fig. 1 Pin connections (top view)

FEATURES

- Coincidence Detector
- Sync Separator
- Noise Separator
- Vertical Sync Separator
- Colour Burst Keying
- Line Flyback Pulse Generator
- Output Pulse Phase Shifter
- Output Pulse Duration Switching
- Sync Gating Pulse Generator
- Low Supply Voltage Protection

ABSOLUTE MAXIMUM RATINGS

Voltages	
Supply pin 1 (when supplied by th	e IC) 13.2V
Supply pin 2	18V
Pin 4	0V to 13.2V
Pin 9	-6V to +6V
Pin 10	-6V to +6V
Pin 11	0V to 13.2V
Currents	•
Pin 2	400mA peak
Pin 3	400mA peak
Pin 4	1mA peak
Pin 6	10mA peak
Pin 7	10mA peak
Pin 11	2mA peak
Power dissipation	
Total power dissipation	800mW
Temperature	
Storage temperature	-55°C to +125°C
Operating ambient temperature	-10°C to +60°C

- Supply Voltage (pin 1) 12V typ.
- Supply Current 30mA typ.
- Sync Separator Input (pin 9) 3V p-p typ.
- Pulse Duration Switch Input (pin 4)
- at $t = 6 \mu s$ at $t = 14 \mu s + t_d$ 9.4V to V₁ at $t = 14 \mu s + t_d$ VCR Switch ON (pin 11) 0V to 1.5V and
- VCR Switch ON (pin 11) 0V to 1.5V and 9V to V1

Output signal

- Vertical Sync Pulse (pin 8)
- 11V p-p (typ.) Burst Gating Pulse (pin 7) 11V p-p (typ.)
- Line Drive Pulse (pin 3) 10.5V p-p (typ.)

TDA2590

Fig. 2 TDA2590 block diagram

Fig. 3 TDA2590 timing relationships

 $\begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \\ \textbf{Test conditions (unless otherwise stated):} \\ \textbf{Supply voltage, V1 = 12V} \\ \textbf{T}_{amb} = +25^{\circ}\text{C} \\ \textbf{Refer to timing diagram, Fig. 3 and Application circuit, Fig. 4} \\ \textbf{Voltages are referred to pin 6} \end{array}$

		[Value		Value			
Characteristic	Pin	Min.	Тур.	Max.	Units	Conditions		
Sync separator Input switching voltage Input keying current Input blocking current Input switching current	9	5	0.8	100 1 5	V µА µА µА	V9 = -5V		
Noise separator Input switching voltage Input keying current Input switching current Input blocking current Line flyback pulse Input current Input switching voltage Input limiting voltage Input resistance	10 6	5 10 0.7	1.4 150 1.4 400	100 1 +1.4	ν μΑ μΑ ν ν ν Ω	V10 — —5V		
Puise duration switch Input voltage Input current Input voltage Input current Input voltage Input current (input open) VCR switch Input voltage (typical range) Input current	4	9.4 200 200 5.4 0 9 200	0	V1 4.0 6.5 V1 1.5	Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α	$t = 6 \mu s$ $t = 14 \mu s + t_d$ $t = 0, V_3 = 0$ See note 1 See note 2 $V_{11} = 0V \text{ to } 1.5V$		
Output current Vertical sync pulse (positive going) Output voltage Output resistance	8	1	11 2		mA Vpp kΩ	$V_{11} = 9V$ to V_1		
Burst gating pulse (positive-going) Output voltage Output resistance Blanking pulse	7	10	11 400		Vp–p Ω			
Output voltage (typical range) Output resistance Line drive pulse (positive going) Output voltage Output cyrent (average value)	3	2.5	400 10.5	3.5	Vpp Ω Vpp			
Output resistance for leading edge of line pulse Output resistance for trailing edge			2.5		Ω			
Oscillator Threshold voltage low level Threshold voltage high level Discharge current Phase comparison (4:: sync	14		4.4 7.6 0.47		V V mA			
pulse/oscillator) Control voltage range (typ) Control current Output blocking current Output resistance	13	3.8 1.9 High Low	2.1 (see no (see no	8.2 2.3 1 ote 3) te 4)	V mAp–p µA	$V_{13} = 4V \text{ to } 8V$ $V_{13} = 4V \text{ to } 8V$ $V_{13} < 3.8V \text{ or } > 8.2V$		
Time constant switch Output voltage Output current Output resistance	12		6 100 60	1	V mA Ω kΩ	$V_{11} = 2.5V \text{ to } 7V$ $V_{11} < 1.5V \text{ or } > 9V$		

TDA2590

ELECTRICAL CHARACTERISTICS (Contd.)

	Dia		Value	Value		Conditions
Characteristic	Pin	Min.	Тур.	Max.	Units	Conditions
Coincidence detector (Ø3) Output voltage typical range Output current :	11	0.5		6	ν	
without coincidence with coincidence Phase comparison (#:: oscillator/			0.1 0.5		mApp mApp	
line flyback pulse) Control voltage range (typ)	5	5.4	,	7.6	V mAn-n	
Output resistance		High	(see n 8	ote 3)	kΩ	V₅ = 5.4V to 7.6V V₅ < 5.4V or > 7.6V
Input current at blocked phase detector				5	μA	$V_5 = 5.4 V$ to 7.6 V
Applications (see Fig. 4) Sync separator	9					
Input voltage (negative video signal) Input keying current range Noise gating	10	1 5	3	7 100	Vp–p µA	
Input voltage Input keying current range Superimposed noise voltage		1 5	3	7 100 7	Vр–р µА Vр–р	
Vertical sync pulse separator Delay between leading edge of input and output signal, ton Delay between trailing edge of input			12		μs	
and output signal, t _{off} Output voltage Output resistance	8 8		11 2	t _{on}	µs Vp–p kΩ	
Oscillator Frequency: free running Spread of frequency, Δf₀/f₀ Frequency, control			15.625	±5	kHz %	$C_{14} = 4.7 nF$, $R_{15} = 10 k\Omega$ See note 5
sensitivity, $\Delta f_0 / \Delta I_{15}$ Adjustment range of			31		Hz/µA	
network in Fig. 2 Influence of supply voltage on frequency Δf _o /f _o			±10		%	
$\Delta V/V_{nom}$ Change of frequency when				±0.05		See note 5, $V_1 = 12V$
V1 drops to 5V Temperature coefficient of oscillator frequency per °C				±10 ±10-4	%	See note 5
Phase comparison (Ø1: sync pulse/oscillator)				10		
Control sensitivity Catching and holding range (82kΩ between pins 13 and 15)			2 ±780		kHz/µs Hz	R13-15 = 82kΩ
Spread of catching and holding range Phase comparison (ø2: oscillator/ line flyback pulse)			±10		%	See note 5
Permissible delay between leading edge of output pulse and leading edge of flyback pulse, Atd Static control error td/td		0		15	μs %	
Overall phase relation See Note 6 Phase relation between middle of sync pulse and the middle of the				0.2	76	
flyback pulse, t Tolerance of phase relation Δt			2.6	0.7	μs µs	
Adjustment sensitivity of overall phase relation	5					
caused by : adjustment voltage $\Delta V_5/\Delta t$			0.1		V/µs	
$\Delta l_{5}/\Delta t$			30		µA/µs	

ELECTRICAL CHARACTERISTICS (Contd.)

Characteristic			Value		Units	•
		Min.	Тур.	Max.		Conditions
Burst gating pulse Phase relation between middle of sync pulse at the input and the trailing edge of the burst gating pulse Phase relation between middle of sync pulse at the input and the leading edge of the burst gating pulse Line drive pulse Output pulse duration, tp for thyristor O/P Output pulse duration, tp/for transistor O/P Supply voltage for switching off the output pulse Internal gating pulse Pulse duration	7 7 3 3 1	5.8 1.0 4:5	6.6 1.9 6.0 14 +t₄ 4 7.5	7.4 2.8 7.5	su su Su Su Su Su Su Su Su Su Su Su Su Su Su	At 7V level $V_7 = 7V$ At 7V level $V_4 > 9.4V$ $V_4 < 4V$, see note 7

NOTES

May also be left unconnected VCR 'on' is normally achieved by connecting pins 11, via the VCR switch, to either ground or V1 Current source Emitter follower 1. 2.

3.

4.

5. Excluding external component tolerances
6. The adjustment of the overall phase relation and consequently the leading edge of the output pulse occurs automatically by phase detector 2 (see Fig. 2)
7. td = switch-off delay of line output stage.

Fig. 4 Application and test circuit

TDA2591/3

The TDA2591 and TDA2593 are integrated line oscillator circuits for colour television receivers using thyristor or transistor line deflection output stages.

The circuits incorporate a line oscillator which is based on the threshold switching principle, a line deflection output stage capable of direct drive of thyristor deflection circuits, phase comparison between the oscillator voltage and both the sync pulse and line flyback pulse. Also included on the chip is a switch for changing the filter characteristic and the gate circuit when used for VCR.

The TDA2593 generates a sandcastle pulse (at pin 7) suitable for use with the TDA2532.

FEATURES

- Coincidence Detector
- Sync Separator
- Noise Separator
- Vertical Sync Separator
- Colour Burst Keyina
- Line Flyback Pulse Generator
- Output Pulse Phase Shifter
- Output Pulse Duration Switching
- Sync Gating Pulse Generator
- Low Supply Voltage Protection

ABSOLUTE MAXIMUM RATINGS

Fig.1 Pin connections (top view)

QUICK REFERENCE DATA

- Supply Voltage (pin 1) 12V typ.
- Supply Current 30mA typ.
- Sync Separator Input (pin 9) 3V p-p typ.
- Pulse Duration Switch Input (pin 4)
- at t == $7\mu s$ 9.4V to V₁
- at $t = 14 \mu s + t_d$ OV to 4V VCR Switch ON (pin 11) OV to 1.5V and
 - 9V to V₁

Output signal

- Vertical Sync Pulse (pin 8)
 - 11V p-p (typ.)
- Burst Gating Pulse (pin 7) 11V p-p (typ.)
 Line Drive Pulse (pin 3) 10.5V p-p (typ.)

Voltages		
Supply pin 1 (when supplied by the	e IC) 13.2V	
Supply pin 2	18V	
Pin 4	0V to 13.2V	
Pin 9	-6V to +6V	
Pin 10	-6V to +6V	
Pin 11	0V to 13.2V	
Currents		
Pin 2	400mA peak	
Pin 3	400mA peak	650mA trivistor drive only
Pin 4	1mA peak	,
Pin 6	10mA peak	
Pin 7	10mA peak	
Pin 11	2mA peak	
Power dissipation		
Total power dissipation	800mW	
Temperature		
Storage temperature	-55°C to +125°C	
Operating ambient temperature	-10°C to +60°C	

Fig. 2 TDA2591/3 block diagram

 $\begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \\ \textbf{Test conditions (unless otherwise stated):} \\ Supply voltage, V1 = 12V \\ T_{amb} = +25^{\circ}C \\ Refer to timing diagram, Fig. 3 and Application circuit, Fig. 4 \\ Voltages are referred to pin 6 \end{array}$

		Value				
Characteristic	Pin	Min.	Тур.	Max.	Units	Conditions
Sync separator Input switching voltage Input keying current Input blocking current Input switching current	9	5	0.8	100 1 5	V μΑ μΑ	V9 ==5V
Noise separator Input switching voltage Input keying current Input switching current Input blocking current Line flyback pulse Input current	10 6	5 10	1.4 150	100 1	ν μΑ μΑ μΑ	V10 = -5V
Input switching voltage Input limiting voltage Input resistance Pulse duration switch Input voltage Input current Input voltage Input current	4	0.7 9.4 200 0 200	400	+1.4 V1 4.0	ν V Ω ν μΑ ν	$t = 7 \mu s$ $t = 14 \mu s + t_d$
Input voltage Input current (input open) VCR Switching Input voltage (typical range)	11	5.4 0 9 200	0	6.5 1.5 V1	ν μΑ ν ν μΑ	$t = 0, V_3 = 0$ See note 1 See note 2 $V_{11} = 0V$ to 1.5V
Output current Vertical sync pulse (positive going) Output voltage Output resistance	8	10	11 2	2	mA Vp–p kΩ	$v_{11} = 9v to v_1$
Burst gating pulse (positive-going) Output voltage Output resistance Blanking pulse	7	10	11 400		Vp–p Ω	
Output voltage (typical range) 2591 Output voltage (typical range) 2593 Output resistance Line drive pulse (positive going)	3	2.5 4.0	400	3.5 5.0	Vp-p Vp-p Ω	
Output voltage Output current (average value) Output resistance for leading edge of line pulse			10.5 100 2.5		vp–p mA Ω	
Output resistance for trailing edge of line pulse Oscillator Threshold voltage low level Threshold voltage high level Discharge current	14		20 4.4 7.6 0.47		Ω V V mA	
Phase comparison (#1: sync pulse/oscillator) Control voltage range (typ) Control current Output blocking current Output resistance	13	3.8 1.9 High	2.1	8.2 2.3 1 ote 3)	ν mAp–p μA	$V_{13} = 4V \text{ to } 8V$ $V_{13} = 4V \text{ to } 8V$ $V_{13} = 38 \text{ V or } > 8 2V$
Time constant switch Output voltage Output current Output resistance	12		6 100 60	1	V mA Ω kΩ	$V_{11} = 2.5V \text{ to } 7V$ $V_{11} = 2.5V \text{ to } 7V$ $V_{11} < 1.5V \text{ or } > 9V$

ELECTRICAL CHARACTERISTICS (Contd.)

			Value			
Characteristic	Pin	Min.	Тур.	Max.	Units	Conditions
Coincidence detector (Ø3) Output voltage typical range	11	0.5		6	v	
without coincidence with coincidence			0.1 0.5		mAp-p mAp-p	
Control correct	5	5.4	1	7.6	V mAn-n	
Output resistance		High	(see n I 8	ote 3)	kΩ	$V_5 = 5.4V$ to 7.6V $V_5 < 5.4V$ or $> 7.6V$
Input current at blocked phase detector				5	μΑ	$V_5 = 5.4 V$ to $7.6 V$
Applications (see Fig. 4) Sync separator	9			-	.,	
Input voltage (negative video signal) Input keying current range Noise gating	10	5	3	100	Vp–p µA	
Input voltage Input keying current range Superimposed noise voltage		1 5	3	7 100 7	Vр–р µА Vр–р	
Vertical sync pulse separator Delay between leading edge of input and output signal, ton Delay between trailing edge of input			[.] 12		μs	
and output signal, t _{off} Output voltage Output resistance	8 8		11 2	t _{on}	µs Vp–p kΩ	
Oscillator Frequency : free running Spread of frequency, $\Delta f_o/f_o$			15.625	±:5	kHz %	C14= 4.7nF, R15 = 10kΩ See note 5
Frequency control sensitivity, $\Delta f_0 / \Delta I_{15}$ Adjustment range of			31		Hz/µA	
network in Fig. 2 Influence of supply voltage			±10		%	
				±0.05		See note 5,V1 = 12V
V1 drops to 5V Temperature coefficient of				±10	%	See note 5
oscillator frequency per °C Phase comparison (ø1: sync pulse/oscillator)				±10-4		
Control sensitivity Catching and holding range			2		kHz/µs	
Phase comparison (Ø2: oscillator/ line flyback pulse)			±10 ±10		HZ %	M13-15 = 82KΩ See note 5
Permissible delay between leading edge of output pulse and leading edge of flyback pulse, Δtd		0		15	μs	
Static control error, td/td Overall phase relation See Note 6 Phase relation between middle of sync pulse and the middle of the				0.2	%	
flyback pulse, t Tolerance of phase relation Δt			2.6	0.7	μS μS	
Adjustment sensitivity of overall phase relation	5					
caused by : adjustment voltage $\Delta V_5/\Delta t$ adjustment current			0.1		V/µs	
$\Delta l_5/\Delta t$			30		µA/µs	

ELECTRICAL CHARACTERISTICS (Contd.)

Characteristic	Din	Value		Linita	O ditions	
Characteristic	F (1)	Min.	Тур.	Max.	Units	Conditions
Burst gating pulse Pulse width Phase relation between middle of	7	3.7	4.0	4.3	μs	At 7V level
sync pulse at the input and the leading edge of the burst gating pulse	7	2 1 5	2 65	3 1 5		$V_7 = 7V$
Line drive pulse		2.10	2.00	0.10	μ3	
Output pulse duration, tp	3 3	5.5	7.0 14 +ta	8.5	μs μs	V₄ > 9.4V V₄ < 4V, see note 7
Supply voltage for switching off the output pulse Internal gating pulse	1		4		v	
Pulse duration			7.5		μs	

NOTES

May also be left unconnected VCR 'on' is normally achieved by connecting pins 11, via the VCR switch, to either ground or V1

1. 2. 3. Current source Emitter follower

4.

Excluding external component tolerances
 The adjustment of the overall phase relation and consequently the leading edge of the output pulse occurs automatically by phase

detector 2 (See Fig. 2) 7. td = switch-off delay of line output stage.

Fig. 4 Application and test circuit

8. PACKAGES

CM6

CM8

10 LEAD TO-5

CM10

CM10

14 LEAD CERAMIC D.I.L.

DP14

ŧ

24 LEAD CERAMIC D.I.L.

16 LEAD CERAMIC D.I.L.

DG16

IO LEAD FLAT PACK

14 LEAD FLAT PACK

NOTE: CASE IS THIRD ELECTRICAL CONNECTION

9. Plessey Semiconductors World Wide

PLESSEY SALES REPRESENTATIVES:

ALABAMA:	Huntsville	(205) 883-9260	Remco
ARIZONA:	Scottsdale	(602) 948-4404	Faser Technical Sales
CANADA:	Bolton	(416) 857-4302	MacKay Associates
CALIFORNIA:	Goleta Alhambra Irvine Los Angeles San Diego	(805) 964-8751 (213) 281-2280 (714) 557-4460 (213) 487-1241 (714) 292-8525	The Thorson Company of So. California The Thorson Company of San Diego
FLORIDA:	Plantation	(305) 473-2101	Gallagher Associates
GEORGIA:	Duluth	(404) 476-1730	Remco
ILLINOIS:	Arlington Heights	(312) 956-1000	Micro Sales Inc.
MARYLAND:	Beltsville	(301) 937-5902	Applied Engineering Consultants
MASSACHUSETTS:	Natick	(617) 655-6080	Wayland Engineering Sales
MICHIGAN:	Brighton	(313) 227-1786	S.A.I. Marketing Corp.
MINNESOTA:	Bloomington	(612) 884-8291	Electronics Sales Agency Inc.
MISSOURI:	Independence St Louis	(816) 254-3600 (314) 997-1515	Engineering Services Company Engineering Services Company
NEW MEXICO:	Phoenix	(602) 266-2164	Eltron
NEW YORK:	Plainview Spring Valley Skaneateles	(516) 681-3155 (914) 354-6067 (315) 685-5731	Robert Smith Assocs. Robert Smith Assocs. Robtron Inc.
NORTH CAROLINA:	Raleigh	(919) 847-5079	Remco
OHIO:	Shaker Heights Centerville Zanesville	(216) 751-3633 (513) 435-3181 (614) 454-8942	S.A.I. Marketing Corp. S.A.I. Marketing Corp. S.A.I. Marketing Corp.
PENNSYLVANIA	Pittsburgh Huntingdon Valley	(412) 261-0482 (215) 947-5641	S.A.I. Marketing Corp. Dick Knowels Associates
TEXAS:	Arlington Houston Austin	(817) 640-9101 (703) 772-1572 (512) 451-3325	W. Pat Fralia Company Inc. W. Pat Fralia Company Inc. W. Pat Fralia Company Inc.
VIRGINIA:	McLean	(703) 356-6309	Applied Engineering Consultants

PLESSEY DISTRIBUTORS

(Dial direct for orders under 100 pieces and faster delivery)

Palo Alto	(415) 856-9332	Nepenthe
Irvine	(714) 540-9979	Plessey Semiconductors
Toronto	(416) 364-9281	G.E.C. Canada Ltd.
Beltsville	(301) 937-8321	Applied Engineering Consultants
Plainview	(516) 249-6677	Plainview Electronic Supply Corp.
Ft. Worth	(817) 429-8596	Patco Supply
	Palo Alto Irvine Toronto Beltsville Plainview Ft. Worth	Palo Alto (415) 856-9332 Irvine (714) 540-9979 Toronto (416) 364-9281 Beltsville (301) 937-8321 Plainview (516) 249-6677 Ft. Worth (817) 429-8596

PLESSEY REGIONAL OFFICES

BRYAN PROCTER Western Sales Manager 710 Lakeway Suite 265 Sunnyvale, CA 94086 (408) 730-1111 JONATHAN HILL Midwest Sales Manager 4849 N. Scott Suite 121 Schiller Park, IL 60176 (312) 678-3280/3281 TWX 910-227-0053 PAT REDKO Eastern Sales Manager 89 Marcus Blvd. Hauppauge, NY 11787 (516) 273-3060 TLX 961419 TELL USA HAUP A.J. WILLIS S.E. Sales/Applications 7094 Peachtree Ind. Blvd. Sulte 295 Norcross, GA 30071 (404) 447-6910 TLX 70-7309 Service NSCS VERN REEB Central Sales/Applications 112 East High Street Hicksville, OH 43526 (419)542-7544

EUROPE sales offices

BENELUX Plessey S.A., Chausee de St. Job 638, Brussels 1180, Belgium. Tel: 02 374 59 73. Tx: 22100
FRANCE Plessey France S.A., 16, 20 Rue Petrarque, 75016 Paris. Tel: 727 43 49 Tx: 62789
ITALY Plessey S.p.A., Corso Sempione 73, 20149 Milan. Tel: 349 1741 Tx: 37347
SCANDINAVIA Svenska Plessey A.B., Alstromergatan 39, 4tr, S-112 47 Stockholm 49, (P.O. Box 49023 S-100 28 Stockholm 49) Sweden. Tel: 08 23 55 40 Tx: 10558
SWITZERLAND Plessey Verkaufs A.G., Glattalstrasse 18, CH-8052 Zurich. Tel: 50 36 55, 50 36 82 Tx: 54824
UNITED KINGDOM Plessey Semiconductors, Cheney Manor, Swindon, Wilts. SN2 20W Tel: 0793 36251
WEST GERMANY Plessey GmbH., 8 Munchen 40, Motorstrasse 56, Tel: (89) 351 6021,6024 Tx: 5215322

Plessey GmbH, Moselstrasse 18, Postfach 522, 4040 Neuss. Tel: (02101) 44091 Tx: 517844

:,

agents

AUSTRALIA Plessey Australia Pty. Ltd., Components Div., P.O. Box 2, Christina Road, Villawood, N.S.W. 2163. Tel: 72 0133 Tx: 20384

AUSTRIA Plessey GesmbH., Postfach 967, A-1011 Vienna. Tel: 63 45 75 Tx: 75 963

BRAZIL Plessey Brazil, Caixa Postal 7821, Sao Paulo. Tel: (011) 269 0211. Tx: 112338

CANADA Plessey Canada Ltd., 300 Supertest Road, Downsview, Toronto, Ontario. Tel: 661 3711. Tx: 065-24488

EASTERN EUROPE Plessey Co. Ltd., 29 Marylebone Rd., London NW1 5JU, England. Tel: 01 486 4091.

Tx: 27331

EIRE Plessey Ireland Ltd., Mount Brown, Old Kilmainham, Dublin 8. Tel: 75 84 51/2. Tx: 4831

GREECE Plessey Co. Ltd., Hadjigianni Mexi 2, Athens. Tel: (21) 724 3000. Tx. 219251

HONG KONG Plessey Company Ltd., Tugu Insurance Building, 12th floor, 1 Lockhart Road. GPO Box 617 Tel: 5-275555 Tx: 74754

JAPAN Cornes & Co Ltd., Maruzen Building, 2 Chome Nihonbashi-Dori. C.P.O. Box 158, Chuo-ku, Tokyo 103. Tel: 272-5771. Tx: 24874

Cornes & Co Ltd., Marden House, C.P.O. Box 329, Osaka. Tel: 532-1012/1019. Tx: 525-4496

NETHERLANDS Plessey Fabrieken N.V., Van de Mortelstraat 6, P.O. Box 46, Noordwijk. Tel: 01719 19207. Tx: 32008

NEW ZEALAND Plessey (N.Z.) Ltd., Ratanui Street, Private Bag, Henderson, Auckland 8. Tel: Henderson 64 189. Tx: 2851

PORTUGAL Plessey Automatica Electrica, Portugesa S.A.R.L., Av. Infant D. Henrique 333, Apartado 1060, Lisbon 6. Tel: 313171/9 Tx: 12190

SOUTH AFRICA Plessey South Africa Ltd., Forum Building, Struben Street, (P.O. Box 2416) Pretoria 0001 Transvaal. Tel: 34511 Tx: 53-0277

SPAIN The Plessey Company Ltd., Calle Martires de Alcala, 4-3° Dcha., Madrid 8. Tel: 248 12 18 and 248 38 82 Tx: 42701

distributors

FRANCE Scientech, 11 Avenue Ferdiaend Buisson, 75016 Paris. Tel: 609 91 36 Tx: 26042 ITALY Melchioni, Via P. Colletta 39, 20135 Milan. Tel: 5794

SCANDINAVIA Scansupply A, S., Nannasgade 20, Dk-2200 Copenhagen, Denmark. Tel: 1-83 5090 Tx: 19037 Oy Ferrado A.B. Nylandsgatan 2C, 00120 Helsinki 12, Finland. Tel: 65 60 05 Tx: 121394 Skandinavisk Elektronikk A, S., Ostre Aker Vei 99, Veitvedt, Oslo 5, Norway. Tel: (02) 15 00 90 Tx: 11963

UNITED KINGDOM (For all circuits except T.V.)

Farnell Electronic Components Ltd., Canal Road, Leeds LS12 2TU Tel: 0532 636311 Tx: 55147

Gothic Electronic Components, Beacon House, Hampton Street, Birmingham B19 3LP. Tel: 021 236 8541 Tx: 338731 Semiconductor Specialists (UK) Ltd., Premier House, Fairfield Road, Yiewsley, West Drayton, Middlesex. Tel: 08954 46415 Tx: 21958

SDS Components Ltd., The Airport, Eastern Road, Portsmouth, Hampshire PO3 5QR. Tel: 0705 65311 Tx: 86114 For T.V. circuits only:-

Best Electronics (Slough) Ltd., Unit 4, Farnburn Avenue, Slough, Bucks SL1 4XU Tel: (0753) 31700/39322 C.P.C. Ltd. 194-200 North Road, Preston PR1 1YP. Tel: (0772) 55034 Tx: 677122

WEST GERMANY

PLZ1 Dr. Guenther Dohrenberg, 1000 Berlin 30, Bayreuther Strasse 3. Tel: (030) 21 38 043-45

PLZ2 Nordelektronik GmbH-KG, 2085 Quickborn, Harksheiderweg 238-240. Tel: (04 106) 4031 Tx: 02 14299

PLZ6 Mansfeld GmbH & Co. KG, 6000 Frankfurt, Zohelstrasse 11. Tel: (0611) 4470 20

PLZ7 Astronic GmbH & Co. KG, 7000 Stuttgart-Vaihingen, Gruendgenstrasse 7. Tel: (0711) 734918

PLZ8 Neumuller & Co. GmbH, 8021 Tauskirchen, Eschenstrasse 2. Tel: 089 6118 231 Tx: 0522106

ï